Zufallsvariable und Einheitskr < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:44 Mo 08.12.2014 | Autor: | Alex1993 |
Aufgabe | Seien [mm] x_{1} [/mm] und [mm] x_{2} [/mm] reelle Zufallsvariablen, derart dass der [mm] R^2 [/mm] wertige Zufallsvektor [mm] x:(x_{1},x_{2})^t [/mm] auf {(x,y)| [mm] x^2 +y^2 \le [/mm] 1} gleichverteilt ist. |
Hey, ich haben eine kleine Frage zu diesem Teil der Aufgabe. Wir haben hier das Modell [mm] (\IR^2 [/mm] , [mm] B(R^2), P_{x}) [/mm] gewählt. Das verstehe ich noch-dies geht aus der vorherigen Aufgabe hervor. Nun haben wir [mm] P_{x}= \frac{ \lamda ^2 (A \cap \Omega ' )}{\pi}
[/mm]
wieso wir [mm] \lamda^2 [/mm] wählen verstehe ich. Allerdings verstehe ich nicht, wieso wir A durch A [mm] \cap \Omega [/mm] ' und [mm] \Omega [/mm] durch [mm] \Pi [/mm] ersetzen. Denn eigentlich gilt doch : [mm] P(a)/P(\Omega). [/mm] Was hat [mm] \Pi [/mm] nun hiermit zu tun und wieso wählen wir A so wie oben angegeben?
Lg
|
|
|
|
> Seien [mm]x_{1}[/mm] und [mm]x_{2}[/mm] reelle Zufallsvariablen, derart dass
> der [mm]R^2[/mm] wertige Zufallsvektor $\ [mm] x:(x_{1},x_{2})^t$ [/mm] auf [mm] $\{(x,y)|\ x^2 +y^2 \le 1\,\}$ [/mm]
> gleichverteilt ist.
>
>
> Hey, ich haben eine kleine Frage zu diesem Teil der
> Aufgabe. Wir haben hier das Modell [mm](\IR^2[/mm] , [mm]B(R^2), P_{x})[/mm]
> gewählt. Das verstehe ich noch-dies geht aus der
> vorherigen Aufgabe hervor. Nun haben wir [mm]P_{x}= \frac{ \lamda ^2 (A \cap \Omega ' )}{\pi}[/mm]
>
> wieso wir [mm]\lamda^2[/mm] wählen verstehe ich. Allerdings
> verstehe ich nicht, wieso wir A durch A [mm]\cap\ \Omega[/mm] ' und
> [mm]\Omega[/mm] durch [mm]\Pi[/mm] ersetzen. Denn eigentlich gilt doch :
> [mm]P(a)/P(\Omega).[/mm] Was hat [mm]\Pi[/mm] nun hiermit zu tun und wieso
> wählen wir A so wie oben angegeben?
Hallo Alex
leider hast du gar nicht angegeben, wie A , [mm] P_x [/mm] , [mm] \Omega [/mm] , [mm] \Omega'
[/mm]
definiert sein sollen.
Das [mm] \pi [/mm] steht natürlich für den Flächeninhalt der Kreisscheibe,
in der die Gleichverteilung ihre konstante positive Dichte hat.
LG , Al-Chw.
|
|
|
|
|
Huhu,
dass mit dem [mm] \Pi [/mm] verstehe ich nun. Du hast recht, der Radius ist in unserem Falle 1. Also ist der Flächeninhalt gegeben durch [mm] \Pi. [/mm] Jetzt allerdings iene allgemeine Frage. Ist mit [mm] \Lamda(\Omega) [/mm] immer der Flächeninhalt gefragt, wenn wir uns im [mm] R^2 [/mm] befinden?
das A haben wir leider nur durch A [mm] \in B(R^2) [/mm] definiert.
Wie [mm] \Omega' [/mm] definiert ist weiß ich leider auch nicht so recht. Allerdings haben wir ja die Abbildung X: [mm] \Omega [/mm] -> [mm] \R^2 [/mm] . mehr gibt die Aufgabenstellung leider nicht her. Alles was ich jetzt nicht verstehe, ist die Begründung dafür, P(A) als P(A [mm] \cap \Omega [/mm] ) zu wählen.
LG
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:20 Mi 10.12.2014 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:11 Mo 08.12.2014 | Autor: | fred97 |
> Seien [mm]x_{1}[/mm] und [mm]x_{2}[/mm] reelle Zufallsvariablen, derart dass
> der [mm]R^2[/mm] wertige Zufallsvektor [mm]x:(x_{1},x_{2})^t[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
auf {(x,y)|
> [mm]x^2 +y^2 \le[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
1} gleichverteilt ist.
>
>
>
> Hey, ich haben eine kleine Frage zu diesem Teil der
> Aufgabe. Wir haben hier das Modell [mm](\IR^2[/mm] , [mm]B(R^2), P_{x})[/mm]
Ich nehme an, dass mit [mm] B(R^2) [/mm] die Borelsche [mm] \sigma [/mm] - Algebra auf [mm] \IR^2 [/mm] gemeint ist. Ist das so ?
> gewählt. Das verstehe ich noch-dies geht aus der
> vorherigen Aufgabe hervor. Nun haben wir [mm]P_{x}= \frac{ \lamda ^2 (A \cap \Omega ' )}{\pi}[/mm]
Dem Quelltext entnehme ich , dass das Maß [mm] P_x [/mm] wie folgt definiert ist:
[mm]P_{x}(A)= \frac{ \lambda ^2 (A \cap \Omega ' )}{\pi}[/mm]
Ich vermute, dass [mm] \lambda^2 [/mm] das 2-dimensionale Lebesque-Maß auf [mm] B(R^2) [/mm] ist.
Ist das so ?
Wie Al schon sagte: unklar sind [mm] \Omega [/mm] und [mm] \Omega [/mm] '
Fragen über Fragen ......
FRED
>
> wieso wir [mm]\lamda^2[/mm] wählen verstehe ich. Allerdings
> verstehe ich nicht, wieso wir A durch A [mm]\cap \Omega[/mm] ' und
> [mm]\Omega[/mm] durch [mm]\Pi[/mm] ersetzen. Denn eigentlich gilt doch :
> [mm]P(a)/P(\Omega).[/mm] Was hat [mm]\Pi[/mm] nun hiermit zu tun und wieso
> wählen wir A so wie oben angegeben?
> Lg
|
|
|
|
|
Hey
>
> Ich nehme an, dass mit [mm]B(R^2)[/mm] die Borelsche [mm]\sigma[/mm]
> Algebra auf [mm]\IR^2[/mm] gemeint ist. Ist das so ?
genau!
>
> Dem Quelltext entnehme ich , dass das Maß [mm]P_x[/mm] wie folgt
> definiert ist:
>
> [mm]P_{x}(A)= \frac{lam \bda ^2 (A \cap \Omega ' )}{\pi}[/mm]
auch richtig'!
> Ich vermute, dass [mm]\lambda^2[/mm] das 2-dimensionale
> Lebesque-Maß auf [mm]B(R^2)[/mm] ist.
>
> Ist das so ?
Ja!
>
> Wie Al schon sagte: unklar sind [mm]\Omega[/mm] und [mm]\Omega'[/mm]
Also ich habe ja die Abbildung X: [mm] \Omega [/mm] -> [mm] \IR^2 [/mm] mit [mm] X(w)=(X_{1}(w),X_{2}(w))^t [/mm]
[mm] \Omega [/mm] ist demnach = [mm] \R^2
[/mm]
[mm] \Omega' [/mm] ist nicht genau definiert. Ich nehme mal an, dass wir deshalb [mm] \Omega' [/mm] in der Angabe der verteilungsfunktion auch nicht ausgeschrieben haben.
Allerdings verstehe ich den Ausdruck
lam [mm] \bda [/mm] ^2 (A [mm] \cap \Omega [/mm] ' ) nicht :-/
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:21 Mi 10.12.2014 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|