Zufallsvariablen < Stochastik < Hochschule < Mathe < Vorhilfe
|
Aufgabe 1 | Aufgabe 2 | Seien [mm] (\Omega, F)[/mm] und [mm] (\Omega_i, F_i)[/mm] für [mm]i \in \left\{1,2,3 \right\} [/mm] Ereignisräume. Zeigen Sie:
(a) Sind [mm] X_1: (\Omega_1,F_1) \to (\Omega_2,F_2) und X_2: (\Omega_2,F_2) \to (\Omega_3,F_3)[/mm] Zufallsvariablen, so ist auch [mm]X_2 \circ X_1: (\Omega_1,F_1) \to (\Omega_3,F_3) [/mm] eine Zufallsvariable.
(b) Sind X, Y reelle Zufallsvariablen auf [mm] (\Omega, F)[/mm], so ist [mm] (X, Y): \omega \to (X(\omega),(Y(\omega))[/mm] eine Zufallsvariable von [mm](\Omega, F) nach (IR^2, IB^2) [/mm].
(c) Sind X, Y reelle Zufallsvariablen auf [mm] (\Omega, F)[/mm], so sind auch X + Y und XY relle Zufallsvariablen. | |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Ich hab ein Problem mit dieser Aufgabe, weil ich nicht weiß, wo ich da anfangen soll.
Mir ist klar, dass ich zeigen muss, dass gilt:
[mm] X: \Omega \to \Omega_2[/mm] heißt Zufallsvariable für zwei Ergebnisräume [mm](\Omega, F), (\Omega_2, F_2)[/mm], wenn gilt:
[mm] A_2 \in F_2 \rightarrow X^{-1} A_2 \in F [/mm]
meine Überlegungen:
zu (a) ist das nicht immer so, dass bei Verkettungen von Abbildungen das Urbild erhalten bleibt? Aber wie beweist man das?
zu (b) verstehe ich nicht
zu (c) klingt logisch, aber ich hab ein Brett vor dem Kopf
Ich würde mich sehr freuen, wenn mir jemand einen Denkanstoß geben könnte. Hatte die letzten Jahre keine Mathematikvorlesung und weiß nicht, wie man an so was genau herangeht. Vielen Dank!
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:25 Mi 01.11.2006 | Autor: | Binie |
Hi Mondfuchs
du sagst schon ganz richtig, was du zeigen musst, jetzt musst du es nur noch auf die aufgaben anwenden, ich machs mal bei a und b
a) Sei also [mm] A_{3} \in F_{3}:
[/mm]
[mm] (X_{2} \circ X_{1})^{-1} (A_{3})= (X_{1}^{-1} \circ X_{2}^{-1})(A_{3}) [/mm] = [mm] X_{1}^{-1}(X_{2}^{-1}(A_{3}))
[/mm]
Nun gilt mit [mm] A_{3} \in F_{3}, [/mm] dass [mm] X_{2}^{-1}(A_{3}) \in F_{2} [/mm] weil ja [mm] X_{2} [/mm] eine ZV, dann gilt aber [mm] X_{1}^{-1}(X_{2}^{-1}(A_{3})) \in F_{1} [/mm] weil ja [mm] X_{1} [/mm] ZV. Das war zu zeigen.
b) Sei nun A [mm] \times [/mm] B in [mm] \mathcal{B} \times \mathcal{B} [/mm] (im folgenden sollen eckige Klammern Mengenklammern sein, mein PC spinnt grad)
[mm] (X,Y)^{-1} [/mm] (A [mm] \times [/mm] B) = [mm] [\omega \in \Omega [/mm] / [mm] (X(\omega),Y(\omega)) \in [/mm] A [mm] \times [/mm] B] = [mm] [\omega \in \Omega [/mm] / [mm] X(\omega) \in [/mm] A [mm] \wedge Y(\omega) \in [/mm] B] = [mm] [\omega \in \Omega [/mm] / [mm] X(\omega) \in [/mm] A] [mm] \cap [\omega \in \Omega [/mm] / [mm] Y(\omega) \in [/mm] B] = [mm] X^{-1}(A) \cap Y^{-1}(B)
[/mm]
Nun gilt mit A [mm] \in \mathcal{B}, [/mm] dass [mm] X^{-1}(A) \in [/mm] F und ebenso mit B [mm] \in \mathcal{B}, [/mm] dass [mm] Y^{-1}(B) \in [/mm] F, weil beides ZV, also auch der Schnitt in F. Das war zu zeigen.
Und jetzt versuch doch mal die c)
Liebe Grüße Binie
|
|
|
|