matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenZusammmenhang von Normalenvek.
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Geraden und Ebenen" - Zusammmenhang von Normalenvek.
Zusammmenhang von Normalenvek. < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zusammmenhang von Normalenvek.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:41 Fr 20.12.2013
Autor: Fee

Aufgabe
In einem kartesischen Koordinatensystem sind das Büschel der Ebenen
Ek : kx1 - kx2 + x3 = 8  und der Punkt A (12/12/ 8) gegeben. k ist Element der reellen Zahlen außer 0.
Weisen Sie nach, dass es zu jeder Ebene Ek in dem Ebenenbüschel eine Ebene Ek* gibt, die auf Ek senkrecht steht.
Welcher Zusammenhang muss dann zwischen k und k* sein ?

Hallo zusammen !

Also, aus der Koordinatenform kann man den Normalenvektor entnehmen, in dem Fall:
Vektor a = (k   -k    1)
Wenn zwei Ebenen senkrecht aufeinander stehen, stehen auch die Normalenvektoren der Ebenen senkrecht zueinander.
Das kann man mit dem Skalarprodukt machen :

0 = (k  -k   1) *  ( n1  n2  n3)

     k*n1 + k*n2 + k*n3

n1 = 1

n2 = 2

Diese Zahlen habe ich beliebig eingesetzt.

0 = k*1 + k*2 + n3

0 = -k + n3      I +k

k = n3

vektor n = ( 1  2  k)

Jetzt hat man denke ich nachgewiesen, dass die Ebenen senkrecht zueinander stehen.

Ich verstehe allerdings nicht, welchen Zusammenhang zwischen k und k* sein muss .

Kann man mir da einer helfen ?

Und sind meine Überlegungen eigentlich richtig ?

Vielen Dank !

Eure Fee

        
Bezug
Zusammmenhang von Normalenvek.: Antwort
Status: (Antwort) fertig Status 
Datum: 18:55 Fr 20.12.2013
Autor: hippias


> In einem kartesischen Koordinatensystem sind das Büschel
> der Ebenen
>   Ek : kx1 - kx2 + x3 = 8  und der Punkt A (12/12/ 8)
> gegeben. k ist Element der reellen Zahlen außer 0.
>  Weisen Sie nach, dass es zu jeder Ebene Ek in dem
> Ebenenbüschel eine Ebene Ek* gibt, die auf Ek senkrecht
> steht.
>  Welcher Zusammenhang muss dann zwischen k und k* sein ?
>  Hallo zusammen !
>  
> Also, aus der Koordinatenform kann man den Normalenvektor
> entnehmen, in dem Fall:
>  Vektor a = (k   -k    1)
>  Wenn zwei Ebenen senkrecht aufeinander stehen, stehen auch
> die Normalenvektoren der Ebenen senkrecht zueinander.
>  Das kann man mit dem Skalarprodukt machen :
>  
> 0 = (k  -k   1) *  ( n1  n2  n3)
>  
> k*n1 + k*n2 + k*n3
>  
> n1 = 1
>  
> n2 = 2
>  
> Diese Zahlen habe ich beliebig eingesetzt.
>  
> 0 = k*1 + k*2 + n3
>  
> 0 = -k + n3      I +k

Da stimmt wohl etwas nicht...

>  
> k = n3
>  
> vektor n = ( 1  2  k)
>  
> Jetzt hat man denke ich nachgewiesen, dass die Ebenen
> senkrecht zueinander stehen.
>  
> Ich verstehe allerdings nicht, welchen Zusammenhang
> zwischen k und k* sein muss .

Du hast - bis auf Verrechnen - einen Vektor bestimmt, der orthogonal zu dem Vektor $(k,k,1)$ ist. Dieser von dir ermittelte Vektor kann aber kein Normalenvektor einer Ebene aus der Ebenenschar sein, wie es doch aber gefordert waere. Denn dein Vektor ist nicht kollinear zu einem Vektor der Gestalt $(x,x,1)$. Daran solltest Du bei der Bestimmung von [mm] $k^{\star}$ [/mm] denken.

>  
> Kann man mir da einer helfen ?
>  
> Und sind meine Überlegungen eigentlich richtig ?

Im Grunde ja.

>  
> Vielen Dank !
>  
> Eure Fee


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]