matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationZweite Ableitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Differentiation" - Zweite Ableitung
Zweite Ableitung < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zweite Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:10 Fr 02.01.2009
Autor: Palonina

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
Sei $f: [a,b] \rightarrow  \IR$ zweimal differenzierbar, $x_0 \in ]a,b[$. Dann gilt \\

$\lim_{x\rightarrow x_0}\frac{\frac{f(x)-f(x_0)}{x-x_0}-f'(x_0)}{x-x_o}= \frac{1}{2} f''(x_0)$.

Hallo zusammen,

ich habe die Gleichung durch Umformungen in eine wahre Aussage überführt und wollte fragen, ob das formal so ok geht:

$\lim_{x\rightarrow x_0}\frac{\frac{f(x)-f(x_0)}{x-x_0}-f'(x_0)}{x-x_o}=\frac{1}{2}\lim_{x\rightarrow x_0}\frac{f'(x)-f'(x_0)}{x-x_o}$

Jetzt multipliziere ich die Gleichung mit $x-x_0$ und betrachte rechts den Limes und erhalte dann

$\lim_{x\rightarrow x_0}\frac{f(x)-f(x_0)}{x-x_0}-f'(x_0)}=0$ und das ist ja die Definition der Ableitung $\lim_{x\rightarrow x_0}\frac{f(x)-f(x_0)}{x-x_0}=f'(x_0)}$ und daher eine wahre Aussage.

Gruß
Palonina

        
Bezug
Zweite Ableitung: Gegenfrage
Status: (Antwort) fertig Status 
Datum: 11:00 Fr 02.01.2009
Autor: statler

Hi!

> Sei [mm]f: [a,b] \rightarrow \IR[/mm] zweimal differenzierbar, [mm]x_0 \in ]a,b[[/mm].
> Dann gilt [mm]\\[/mm]
>  
> [mm]\lim_{x\rightarrow x_0}\frac{\frac{f(x)-f(x_0)}{x-x_0}-f'(x_0)}{x-x_o}= \frac{1}{2} f''(x_0)[/mm].
>  
> Hallo zusammen,
>  
> ich habe die Gleichung durch Umformungen in eine wahre
> Aussage überführt und wollte fragen, ob das formal so ok
> geht:
>  
> [mm]\lim_{x\rightarrow x_0}\frac{\frac{f(x)-f(x_0)}{x-x_0}-f'(x_0)}{x-x_o}=\frac{1}{2}\lim_{x\rightarrow x_0}\frac{f'(x)-f'(x_0)}{x-x_o}[/mm]
>  
> Jetzt multipliziere ich die Gleichung mit [mm]x-x_0[/mm] und
> betrachte rechts den Limes und erhalte dann
>  
> [mm]\lim_{x\rightarrow x_0}\frac{f(x)-f(x_0)}{x-x_0}-f'(x_0)}=0[/mm]
> und das ist ja die Definition der Ableitung
> [mm]\lim_{x\rightarrow x_0}\frac{f(x)-f(x_0)}{x-x_0}=f'(x_0)}[/mm]
> und daher eine wahre Aussage.

Ich will dir mal eben kurz zeigen, daß 0 = 1 ist. Dazu subtrahiere ich auf beiden Seiten [mm] $\bruch{1}{2}$, [/mm] das gibt [mm] $-\bruch{1}{2}$ [/mm] = [mm] $\bruch{1}{2}$. [/mm] Jetzt quadriere ich beide Seiten, das gibt [mm] $\bruch{1}{4}$ [/mm] = [mm] $\bruch{1}{4}$. [/mm] Damit habe ich meine ursprüngliche Gleichung in eine wahre Aussage überführt. Ist das so OK?

Gruß aus HH-Harburg
Dieter


Bezug
                
Bezug
Zweite Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:22 Fr 02.01.2009
Autor: Palonina

Hallo Dieter,

ok, aber quadrieren ist keine Äquivalenzumformung; mit 0 darf man Gleichungen auch nicht multiplizieren, sonst könnte man jede falsche Aussage in ein "0=0" umformen.

Solange ich nur erlaubte Äquivalenzumformungen durchführe, könnte man so doch aber eine Aussage beweisen.
Ist es problematisch, dass ich mit [mm] $x-x_0$ [/mm] multipliziere oder wolltest du mich darauf aufmerksam machen, dass meine Aussage zu allgemein fomuliert war und dies nur bei Äuivalenzumformungen gilt?

Gruß,
Palonina

Bezug
                        
Bezug
Zweite Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:30 So 04.01.2009
Autor: statler

Hi!

> Ist es problematisch, dass ich mit [mm]x-x_0[/mm] multipliziere oder
> wolltest du mich darauf aufmerksam machen, dass meine
> Aussage zu allgemein fomuliert war und dies nur bei
> Äuivalenzumformungen gilt?

Ich wollte dich darauf aufmerksam machen, daß bei einem Beweis der Weg vom Bekannten zum zu Beweisenden geht, das müssen nicht unbedingt Äquivalenzumformungen sein. Auf dem Schmierzettel, also bei seinen Vorüberlegungen, macht man es normalerweise natürlich umgekehrt, aber in der Reinschrift hat die Vorgehensweise wie oben zu sein.

Gruß aus HH-Harburg
Dieter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]