matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitZwischenwertsatz für Ableitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Stetigkeit" - Zwischenwertsatz für Ableitung
Zwischenwertsatz für Ableitung < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zwischenwertsatz für Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:34 Do 20.09.2007
Autor: Framl

Aufgabe
Sei [mm] $f:I\rightarrow\mathbb{R}$ [/mm] eine im Intervall [mm] $I\subset\mathbb{R}$ [/mm] (nicht notwendigerweise stetig) differenzierbare Funktion. Man zeige: Für die Funktion [mm] $f':I\rightarrow\mathbb{R}$ [/mm] gilt der Zwischenwertsatz, d.h. sind [mm] $x_1,x_2\in [/mm] I$ und [mm] $c\in\mathbb{R}$ [/mm] mit [mm] $f'(x_1)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo zusammen.

Ich bleibe bei dieser Aufgabe hängen. Ich hatte folgenden Ansatz:

Der MWS garantiert mir ein [mm] $x_0\in (x_1,x_2)\subset [/mm] I$ mit [mm] $f'(x_0)=\frac{f(x_2)-f(x_1)}{x_2-x_1}=:c$. [/mm] Dann müsste ich aber noch nachweisen, dass aus [mm] $f'(x_1)c$, [/mm] oder?

ist dieser Ansatz richtig oder muss ich es ganz anders machen?



        
Bezug
Zwischenwertsatz für Ableitung: Andere Idee
Status: (Antwort) fertig Status 
Datum: 18:17 Do 20.09.2007
Autor: Deuterinomium

Hi!
Also ich glaub der Mittelwertsatz passt hier nicht, da du ja zu einem vorgegebenen Wert c der Ableitung ein [mm] x_{0} [/mm] finden mußt. Der Mittelwertsatz garantiert dir nur dass es einen Punkt [mm]x_{1}[/mm] gibt, der der Steigung der Sekante entspricht.

Ich würde das ganze mit dem Satz von Weierstraß angehen der besagt:
"Ist [mm]f:[a,b]\rightarrow\IR[/mm] stetig, so gibt es Stellen [mm]\alpha,\beta\in[a,b][/mm] mit
[mm]f(\alpha)\le f(x) \le f(\beta) \quad \forall x\in[a,b] [/mm]"
(Kurzgesagt: Eine auf einer kompakten Menge definierte stetige Funktion nimmt ihren größten und kleinsten Funktionswert an.)

Ferner gilt:
"[mm]f:D\rightarrow\IR[/mm] diff'bar in a [mm]\Rightarrow[/mm] f ist stetig in a"

Wähle nun als Ansatz: [mm]g(x)=f(x)-cx[/mm].
Dann ist g diff'bar und stetig auf [mm][x_{1},x_{2}][/mm] und nach dem Satz von Weierstraß nimmt g auf diesem Intervall sein Minimum an.
Wegen [mm]g'(x_{1})<0\quad(g'(x)=f'(x)-c, f'(x_{1})0 \quad (f'(x_{2})>c) [/mm] hat g am Rand lokale Maxima.
Dann muss g sein Minimum in einem inneren Punkt [mm]x_{0}\in(x_{1},x_{2})[/mm] annehmen und da g diff'bar muss dort gelten: [mm]g'(x_{0})=0 \gdw f'(x_{0})-c=0 \gdw f'(x_{0})=c[/mm]
                                                                                               [mm]\Box[/mm]
Gruß
Deuterinomium

Bezug
                
Bezug
Zwischenwertsatz für Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:42 Do 20.09.2007
Autor: Framl

Danke für deine Antwort :-)

Du meinst aber $g(x)=f(x)-c$, oder? Dann klingts plausibel...

Danke :-)

Bezug
                        
Bezug
Zwischenwertsatz für Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:16 Do 20.09.2007
Autor: Deuterinomium

Bitte!
Aber, ich meine trotzdem g(x)=f(x)-cx, sonst verlierst du das c bei der Ableitung!

Gruß
Deuterinomium

Bezug
                
Bezug
Zwischenwertsatz für Ableitung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 15:38 Fr 11.11.2011
Autor: Arachanox

Hallo! Dies ist mein erster Beitrag hier. Ich hoffe es stört nicht, dass ich dieses ziemlich alte Topic wiederaufgreife - aber die Mathematik ändert sich ja nicht also ist immer alles gleich aktuell xD.

Ich habe eine Frage zur Antwort von Deuterinomium:

Warum folgt aus [mm] g'(x_{1}) [/mm] < 0 und [mm] g'(x_{2}) [/mm] > 0, dass dies lokale Maxima sind, also es bestimmt noch kleinere Werte gibt? Da die Ableitung nicht stetig sein muss, kann man ja nichts über die Umgebung von [mm] x_{1} [/mm] und [mm] x_{2} [/mm] sagen, also kann man z.B. nicht sagen, dass die Funktion in der nähe dieser Punkte monoton Fällt oder wächst, also es Punkte p [mm] \in [x_{1}, x_{2}] [/mm] mit g(p) < [mm] g(x_{1}) [/mm] und [mm] g(x_{2}) [/mm] geben muss...

Oder doch? Wenn ja warum?

Vielen Dank im Voraus!

Bezug
                        
Bezug
Zwischenwertsatz für Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:43 Fr 11.11.2011
Autor: kamaleonti

Hallo Arachanox,

> Hallo! Dies ist mein erster Beitrag hier.

Na, dann [willkommenmr]!

> Warum folgt aus [mm]g'(x_{1})[/mm] < 0 und [mm]g'(x_{2})[/mm] > 0, dass dies lokale Maxima sind, also es bestimmt noch kleinere Werte
> gibt?

g'(x)<0 bedeutet, dass g in x (streng) monoton fallend ist,
g'(x)>0 bedeutet, dass g in x (streng) monoton steigend ist.

Bei [mm] x_1,x_2 [/mm] handelt es sich zusätzlich um Randpunkte des Definitionsbereichs, deswegen kann man auf lokale Maxima schließen.

LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]