matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDiskrete MathematikZyklen und permutationen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Diskrete Mathematik" - Zyklen und permutationen
Zyklen und permutationen < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zyklen und permutationen: vom Zyklus zur Permutation
Status: (Frage) beantwortet Status 
Datum: 13:47 Mi 01.02.2006
Autor: nieselfriem

Aufgabe
Bestimmen sie für folgende Komposition von Zyklen die entsprechende Permutation

(13847)(2964)(48)(2961)(3872)

Wie geh ich da am besten vor. Ich habe kein Problem von der Permutation die Zyklen zu bilden jedoch der umgekehrte Schritt macht mir Probleme.

Danke und gruß

niesel

        
Bezug
Zyklen und permutationen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:40 Mi 01.02.2006
Autor: martin1984

Hallo!

Was war denn nochmal ein Zyklus?

Gruß

Bezug
                
Bezug
Zyklen und permutationen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:52 Mi 01.02.2006
Autor: nieselfriem

naja so ist z.B. zur permutation

[mm] \pi=\pmat{ 1 & 2 & 3 & 4 &5 & 6 & 7 & 8 & 9 \\ 3 & 7 & 6 & 4 & 9 & 1 & 2 & 5 & 8} [/mm]

der Zyklus: bzw. die Komposition

[mm] \pi=(136)(27)(4)(589) [/mm]

weil die
1 auf die 3 abbildet
3 auf 6 und 6 wieder auf 1

die 2 auf 7
und die 7 wieder auf 2

4 auf sich selbst (deshalb alleine)

die 5 auf 9
die 9 auf 8
und die 8 wieder 5



Bezug
        
Bezug
Zyklen und permutationen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:59 Mi 01.02.2006
Autor: martin1984

Danke!

Also zu deiner Frage:
Meiner Meinung nach musst du es einfach nur umgekehrt aufschreiben.
Du schreibst in eine Permutation schon mal die obere Reihe. Bei deinem Beispiel ist die größte Zahl die $9$. Also hast du schon mal:
[mm] $\begin{pmatrix} 1&2&3&4&5&6&7&8&9\\ \cdots\end{pmatrix}$ [/mm]

Dann gehst du von hinten nach vorne und schaust auf was die Zahlen abgebildet werden. Du fängst bei der 1 an:
1 auf 2 (3.Zyklus) , dann  2 auf 9 (2. Zyklus)     also die 1 auf die 9

für die 2:
2 auf 3 (4.Z),  3 auf 8 (1.Z)         also die 2 auf die 8

für die 3:
3 auf 8 (5.Z), 8 auf 4 (3.Z), 4 auf 2 (2.Z),      also 3 auf 2

für die 4:
4 auf 8 (3.Z.), 8 auf 4  (1.Z)        also 4 auf 4

für die 5:
kommt nicht vor. also 5 auf 5

Die anderen schreib ich jetzt nicht auf. Dann kommt man auf die Permutation:

[mm] \begin{pmatrix} 1&2&3&4&5&6&7&8&9\\ 9 & 8 & 2 & 4 & 5 & 3 & 6 & 1 & 7\end{pmatrix} [/mm]

Ich hoffe ich konnte dir helfen.

Gruß Martin

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 2h 37m 4. fred97
MaßTheo/Sigma-Algebra = P(X)
Status vor 1d 3h 57m 8. Gonozal_IX
MaßTheo/Beweis Sigma-Algebra
Status vor 2d 6. hohohaha1234
USons/Größtmöglichstes Produkt
Status vor 2d 2. matux MR Agent
Mathematica/parametrischen Plot
Status vor 2d 3. Gonozal_IX
UAuslg/Log. Äquivl. vs. log. Schluss
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]