matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikZz, erwartungstreuer Schätzer
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - Zz, erwartungstreuer Schätzer
Zz, erwartungstreuer Schätzer < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zz, erwartungstreuer Schätzer: für Cov(X1, Y1). Aufgabe.
Status: (Frage) beantwortet Status 
Datum: 15:46 Sa 30.01.2010
Autor: itstudentin

Aufgabe
Seien [mm] (X_{1}, Y_{1}),..,(X_{n}, Y_{n}) [/mm] unabhängige und identisch verteilte Paare reeller  Zufallsvariablen. Zeigen Sie

[mm] S_{X,Y} [/mm] := [mm] \bruch{1}{n-1} \summe_{i=1}^{n}(X_{i}-\neg X_{n})(Y_{i}-\neg Y_{n}) [/mm]

ist ein erwartungstreuer Schätzer für [mm] Cov(X_{1}, Y_{1}) [/mm]

Hinweis: Begründen Sie zunächst, dass ohne Einschränkung [mm] E(X_{1}) [/mm] = 0 = [mm] E(Y_{1}) [/mm] angenommen werden kann.

# Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Ich vorbeite mich gerade für die Klausur und versuche eine neue Aufgabe zu lösen.. Könnt ihr mir helfen vielleicht?

Ok, meine Gedanken: um dies zu zeigen, muss ich beweisen, dass der Schätwert ist gleich p.

Muss ich zuerst Maximum-Likehood-Schätzer finden oder geht es auch ohne?

        
Bezug
Zz, erwartungstreuer Schätzer: Antwort
Status: (Antwort) fertig Status 
Datum: 16:56 Sa 30.01.2010
Autor: ullim

Hi,


> [mm] S_{X,Y} [/mm] := [mm] \bruch{1}{n-1} \summe_{i=1}^{n}(X_{i}-\neg X_{n})(Y_{i}-\neg Y_{n}) [/mm]
>  


meinst Du hier [mm] S_{X,Y} [/mm] := [mm] \bruch{1}{n-1} \summe_{i=1}^{n}(X_{i}-\overline{X})(Y_{i}-\overline{Y}) [/mm]

mfg ullim


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]