matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, Körperabelsche gruppe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gruppe, Ring, Körper" - abelsche gruppe
abelsche gruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

abelsche gruppe: idee
Status: (Frage) beantwortet Status 
Datum: 17:56 Sa 14.11.2009
Autor: grafzahl123

Aufgabe
Sei G gruppe, zeige:
ist [mm] (ab)^2=a^2b^2 [/mm] für alle a,b [mm] \in [/mm] G, so ist G abelsch

z.z G ist kommutativ:
    [mm] (ab)^2=(ba)^2 [/mm]
=>abab=baba
=>aabb=bbaa
[mm] =>a^2b^2=b^2a^2 [/mm]
=> kommutativ => G ist abelsch
kann man das so machen?
würde mich freuen wenn mir einer was dazu sagen könnte.

ich hab ediese frage in keinem anderen forum gestellt

        
Bezug
abelsche gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 18:08 Sa 14.11.2009
Autor: felixf

Hallo!

> Sei G gruppe, zeige:
>  ist [mm](ab)^2=a^2b^2[/mm] für alle a,b [mm]\in[/mm] G, so ist G abelsch
>  z.z G ist kommutativ:
>      [mm](ab)^2=(ba)^2[/mm]

Warum sollte das gelten?!

>  =>abab=baba
>  =>aabb=bbaa
>  [mm]=>a^2b^2=b^2a^2[/mm]
>  => kommutativ => G ist abelsch

>  kann man das so machen?

Nein.

>  würde mich freuen wenn mir einer was dazu sagen könnte.

Du kannst $(a [mm] b)^2$ [/mm] doch mal ausmultiplizieren und mit [mm] $a^2 b^2$ [/mm] vergleichen. Was bleibt uebrig?

LG Felix


Bezug
                
Bezug
abelsche gruppe: rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:19 Sa 14.11.2009
Autor: grafzahl123

[mm] (ab)^2 [/mm] "ausmultipliziert" ist doch [mm] (ab)^2=abab [/mm] und [mm] a^2b^2=aabb [/mm] ist doch das gleiche  nur in der reihenfolge vertauscht, oder stehe ich jetzt irgendwie aufm schlauch und verstehe nicht was du meinst.
oder geht es darum zu zeigen, dass die reihenfolge der as und bs egal ist?

Bezug
                        
Bezug
abelsche gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 18:23 Sa 14.11.2009
Autor: schachuzipus

Hallo grafzahl123,

> [mm](ab)^2[/mm] "ausmultipliziert" ist doch [mm](ab)^2=abab[/mm] und
> [mm]a^2b^2=aabb[/mm] [ok] ist doch das gleiche  nur in der reihenfolge
> vertauscht, oder stehe ich jetzt irgendwie aufm schlauch
> und verstehe nicht was du meinst.
>  oder geht es darum zu zeigen, dass die reihenfolge der as
> und bs egal ist?

Klar. $G$ abelsch heißt doch, dass für alle [mm] $a,b\in [/mm] G$ gilt: $ab=ba$

Das steht ja nun oben noch nicht, da musst du noch hin ;-)

LG

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]