matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisabgeschlossene Menge
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Funktionalanalysis" - abgeschlossene Menge
abgeschlossene Menge < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

abgeschlossene Menge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:06 Sa 06.01.2007
Autor: Denny22

Aufgabe
Sei

$ [mm] M:=\{x=\left(x_n\right)_{n\in\IN}\in l^2\left(\IC\right)\mid x_{2j}=0\;\forall\,j\in\IN\} [/mm] $

Zeige: M ist abgeschlossen.

Hallo an alle,

kann mir jemand einen Tipp geben, wie ich hier am besten vorgehe?

Ich danke euch
Gruß
Denny

        
Bezug
abgeschlossene Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 21:42 Sa 06.01.2007
Autor: Leopold_Gast

[mm]f: \ l^2(\mathbb{C}) \to l^2(\mathbb{C})[/mm] sei die Abbildung "Streichen der Glieder mit ungeradem Index", also [mm]f: \ \left( x_1 , x_2 , x_3 , x_4 , x_5 , x_6 , \ldots \right) \mapsto \left( x_2 , x_4 , x_6 , \ldots \right)[/mm].


Begründe:

[mm]f[/mm] ist stetig, und das Urbild der abgeschlossenen einpunktigen Menge [mm]O = \left\{ \left( 0 , 0 , 0 , \ldots \right) \right\}[/mm] ist gerade [mm]M[/mm]:

[mm]M = f^{-1}(O)[/mm]

Bezug
                
Bezug
abgeschlossene Menge: Noch unklar
Status: (Frage) beantwortet Status 
Datum: 19:38 So 07.01.2007
Autor: Denny22

Hallo,

zunächst vielen Dank für die Antwort.

Ich habe jetzt schon länger darüber nachgedacht und Sätze nachgeschlagen, die ich mit deiner Vorgehensweise verwenden könnte, aber ich komme zu keinem Ziel.

Es wäre echt toll, wenn ihr mir noch ein paar helfende Worte mit auf den Weg geben könntet. (z.B.: nennen der Sätze mit dem wir in diesem speziellen Fall arbeiten)

Ich danke euch vielmals
Gruß
Denny

Bezug
                        
Bezug
abgeschlossene Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 22:38 So 07.01.2007
Autor: Leopold_Gast

1. In Hausdorffschen Räumen sind einpunktige Mengen abgeschlossen.
2. Urbilder abgeschlossener Mengen unter stetigen Funktionen sind abgeschlossen.

(Und das obige [mm]f[/mm] ist stetig wegen [mm]d \left( f(x) , f(x_0) \right) \leq d \left( x , x_0 \right)[/mm] für [mm]x, x_0 \in l^2(\mathbb{C})[/mm]. Im [mm]\varepsilon-\delta[/mm]-Kriterium kann man also trivialerweise [mm]\delta = \varepsilon[/mm] wählen.)

Wenn du mit diesen Begriffen nichts anfangen kannst, mußt du einen direkten Beweis machen. Zeige, daß der Limes jeder konvergenten Folge in [mm]M[/mm] wieder zu [mm]M[/mm] gehört.

Bezug
                                
Bezug
abgeschlossene Menge: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:03 Mo 08.01.2007
Autor: Denny22

Danke für deine Erklärung. Habe es jetzt bestens nachvollziehen können.

Gruß
Denny

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]