abschnittsweise Stetigkeit < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 08:07 Di 25.11.2014 | Autor: | dodo1924 |
Aufgabe | Untersuchen Sie die folgende Funktion auf Stetigkeit (auf [mm] \IR):
[/mm]
[mm] h(t)=\begin{cases} 1, & \mbox{für } t \ge 0 \\ 0, & \mbox{für } t < 0 \end{cases} [/mm] |
Hi!
Laut der Definition von Stetigkeit gilt ja, dass eine Funktion f: A -> B stetig ist, wenn für alle [mm] x\in [/mm] A gilt:
[mm] \forall (x_n) \subseteq [/mm] A : [mm] x_n [/mm] -> [mm] x_0 \Rightarrow f(x_n) [/mm] -> [mm] f(x_0)
[/mm]
Hier habe ich ja eine Teilfolge, die sich von [mm] -\infty [/mm] dem Wert 0 nähert.
Also: sei [mm] x_n^- [/mm] diese Teilfolge mit [mm] x_n^- [/mm] -> [mm] 0=x_0
[/mm]
Nun gilt: [mm] f(x_n^-) [/mm] -> [mm] f(x_0) \not= [/mm] f(0) = 1 (lt. Abbildungsvoschrift).
Also ist diese Funktion nicht stetig!
Hab leider keine wirkliche Ahnung, wie ich unstetigkeit einer abschnittsweise definierten Funktoin zeigen sollte! Hab ein wenig im Internet recherchiert, bin mir trotzdem unsicher, ob die Aufgabe so richtig gelöst ist...
|
|
|
|
Hiho,
du meinst das richtige, aber deine Sprechweise und Notation ist unzureichend.
Wie soll sich eine Folge denn "von [mm] -\infty [/mm] dem Wert 0 nähern"?
Was du meinst ist: Du möchtest eine Folge nehmen, die sich 0 "von unten" nähert, d.h. für die gilt: [mm] $x_n \to [/mm] 0$ mit [mm] $x_n [/mm] < 0 [mm] \;\forall [/mm] n$.
Oder kürzer geschrieben: [mm] $x_n \nearrow [/mm] 0$
Und ja, dann hast du recht, dann gilt:
[mm] $\lim_{x_n \nearrow 0} f(x_n) [/mm] = 0 [mm] \not= [/mm] 1 = f(0)$
Und damit ist f nicht stetig in 0 und damit nicht stetig.
Gruß,
Gono.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:34 Di 25.11.2014 | Autor: | fred97 |
Ergänzend zu Gono:
Du solltest noch eine Folge [mm] (x_n) [/mm] mit
[mm] x_n \to [/mm] 0 und [mm] x_n [/mm] <0 für alle n
konkret angeben !
FRED
|
|
|
|