matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenabstand punkt ebene
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Vektoren" - abstand punkt ebene
abstand punkt ebene < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

abstand punkt ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:26 Mi 25.06.2008
Autor: Lara102

Aufgabe
Gegeben ist die Ebene E: [mm] 10x_{1}+2x_{2}-11x_{3} [/mm] und der in E liegende Punkt Q (3/-2/2)
b, bestimmen sie alle punkte P der geraden g, die von der Ebene den ABstand 3 haben.

hey :)
bräuchte hilfe bei dieser aufgabe.. ich weiß nicht wieso ich nicht weiterkomme.
die gerade g wurde in der teilaufgabe zuvor berechnet. sie lautet: x= [mm] \vektor{3 \\ -2 \\ 2} [/mm] +t* [mm] \vektor{10 \\ 2 \\ -11} [/mm]
ich habe es jetzt sowohl mit der hesse'schen normalenform als auch mit folgendem weg versucht:
6=( [mm] \vektor{x \\ y \\ z} [/mm] - [mm] \vektor{3 \\ -2 \\2}) [/mm] * [mm] \bruch{1}{15} [/mm] * [mm] \vektor{10 \\ 2 \\ -11} [/mm]
was mach ich denn falsch?
vielen dank für die hilfe
lara =)

        
Bezug
abstand punkt ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 15:46 Mi 25.06.2008
Autor: leduart

Hallo
Die Gerade schneidet die Ebene für t=0 in Q. der Richtungsvektor der Geraden ist ne Normale auf der Ebene.
d.h. du musst in der Richtung 3 weitergehen. nach 2 Seiten, dann hast du die 2 Punkte. Kannst du das?
Gruss leduart


Bezug
                
Bezug
abstand punkt ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:08 Mi 25.06.2008
Autor: Lara102

hm.. 3 auf welcher achse?
muss man da nichts rechnen??
lg lara

Bezug
                        
Bezug
abstand punkt ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 18:21 Mi 25.06.2008
Autor: ardik

Hallo Lara,

> hm.. 3 auf welcher achse?

Schau Dir leduarts Antwort noch mal genau an! ;-)

Keine Achse, auf der Geraden in Richtung des Richtungsvektors.

Versuch, Dir's vorzustellen:
Die Gerade steht senkrecht auf der Ebene und schneidet sie in einem bestimmten Punkt. Wenn Du nun von dem Schnittpunkt aus auf der Geraden jeweils drei Einheiten in jede Richtung gehst, bist Du jeweils am Ziel. Dorthin kommst Du mit Hilfe des besagten Vektors.

> muss man da nichts rechnen??

Oh doch! Um vom Schnittpunkt exakt drei Einheiten weg zu kommen, musst Du etwas rechnen.


Übrigens: Wenn die Gerade nicht senkrecht stünde, ginge es natürlich nicht so einfach, dann müsste man tatsächlich mit der Hesse'schen arbeiten. Siehe dazu auch meine andere Antwort (die in ein paar Minuten kommt).

Schöne Grüße
 ardik

Bezug
        
Bezug
abstand punkt ebene: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:27 Mi 25.06.2008
Autor: Al-Chwarizmi


> Gegeben ist die Ebene E: [mm]10x_{1}+2x_{2}-11x_{3}[/mm] und der in
> E liegende Punkt Q (3/-2/2)

wie lautet die Gleichung der Ebene ?
jede Gleichung hat ein Gleichheitszeichen....

Bezug
        
Bezug
abstand punkt ebene: bzgl. Hesse'sche
Status: (Antwort) fertig Status 
Datum: 18:39 Mi 25.06.2008
Autor: ardik

Hallo Lara,

> Gegeben ist die Ebene E: [mm]10x_{1}+2x_{2}-11x_{3}[/mm]

Da fehlt noch was! Das ist so keine Ebenengleichung. (Allerdings lässt sich das Fehlende aus dem Rest der Aufgabe erschließen).

> und der in E liegende Punkt Q (3/-2/2)
>  b, bestimmen sie alle punkte P der geraden g, die von der
> Ebene den ABstand 3 haben.

> die gerade g wurde in der teilaufgabe zuvor berechnet. sie
> lautet: x= [mm]\vektor{3 \\ -2 \\ 2}[/mm] +t* [mm]\vektor{10 \\ 2 \\ -11}[/mm]


Leduarts Weg ist natürlich hier der wesentlich einfachere.
Aber mit der Hesse'schen geht's auch, Du solltest der Übung halber auch dies nochmal probieren.
  

>  ich habe es jetzt sowohl mit der hesse'schen normalenform
> als auch mit folgendem weg versucht:
> 6=[mm]\left( \vektor{x \\ y \\ z}-\vektor{3 \\ -2 \\2}\right) * \bruch{1}{15}*\vektor{10 \\ 2 \\ -11}[/mm]

Hm. Dieser "folgende Weg" ist doch die Hesse'sche Normalenform...
Allerdings mit kleinem Fehler: Warum steht da vorn eine Sechs?
Für die Hesse'sche müsste da eine Null stehen.
Wenn's die Abstandsformel sein soll, müsste da z.B. ein d (für den Abstand) stehen (und genaugenommen die rechte Seite in Betragsstrichen).
Damit die Punkte den Abstand drei von der Ebene haben, muss da also eine Drei bzw. für die andere Seite Minus Drei (wenn wir ohne Betragsstriche arbeiten) stehen. Für den Vektor [mm]\vektor{x \\ y \\ z}[/mm] setzt Du dann die Gerade ein, multiplizierst aus etc. und kannst schließlich t berechnen. Das wiederum in die Gerade eingesetzt liefert die Punkte.

Da Du ohnehin schon die Koordinatenform hast, kannst Du die x-, y-, z-Zeilen der Gerade auch gleich in diese einsetzen - wenn Du die [mm] $\frac{1}{15}$ [/mm] ebenfalls passend einbindest:
[mm] $\frac{1}{15}*(10*(3+10t)+2*(...)-11*(...)\ [/mm] ...$

Schöne Grüße
 ardik

Bezug
                
Bezug
abstand punkt ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:17 Mo 30.06.2008
Autor: Lara102

das hab ich nicht wirklich verstanden... =(
ich brauch doch für die hessesche in koordinatenform gar keinen normaleneinheitsvektor oder?
vielleicht habe ich es ja doch verstanden.. ich muss also die punkt normalen form aufstellen.. dann setze ich für x die vorher berechnete geradengleichung ein, und setzte das ganze gleich dem abstand, den die punkte haben sollen.
und anschließend bekomme ich für t einen wert raus, oder 2 wegen der betragsstriche und setze den in die geradengleichung ein. dadurch bekomme ich dann den /die punkte?? (für t bekomme ich 1/75 raus.. das stimmt wahrscheinlich nicht oder?)
schreib am mi ne klausur, wär also super, wenn mir das nochmal jemand erklären könnte :)
lg, lara

Bezug
                        
Bezug
abstand punkt ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 21:41 Mo 30.06.2008
Autor: Al-Chwarizmi

hallo lara,

1.) die vollständige Ebenengleichung lautet:

     10 x + 2 y - 11 z - 4 = 0

2.) Die Gerade g ist offensichtlich eine Normale (Senkrechte) zu E,
     da ihr Richtungsvektor ein Normalenvektor von E ist.

3.) Weil  Q  der Schnittpunkt von g mit E ist, musst du also
     nur von diesem Punkt  Q  aus der Geraden g entlang auf
     beide Seiten hin die Strecke  3  abtragen.
     Der Richtungsvektor [mm] \vektor{10\\2\\-11} [/mm] hat die Länge
     [m]\wurzel{10^2+2^2+11^2}=15[/m]. Um ihn auf die Länge
     3 zu reduzieren, muss man ihn durch 5 teilen. Ergebnis:
     [mm] \vektor{2\\0.4\\-2.2}. [/mm]
     Diesen Vektor und seinen Gegenvektor [mm] \vektor{-2\\-0.4\\+2.2} [/mm]
     kannst du jetzt von  Q aus abtragen und erhältst als
     Zielpunkte die gesuchten Punkte  [mm] P_1 [/mm]  und  [mm] P_2 [/mm] .


Gruß    al-Chw.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]