matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitÄquivalenz von Grenzwerten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Stetigkeit" - Äquivalenz von Grenzwerten
Äquivalenz von Grenzwerten < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenz von Grenzwerten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:39 Mi 06.01.2016
Autor: Kostja23

Aufgabe
Beweisen Sie die folgende Äquivalenz
[mm] \limes_{x\rightarrow a}f(x)=f(a)\gdw\limes_{h\rightarrow 0}f(a+h)=f(a) [/mm]

Sei [mm] f:\IR\to\IR [/mm]


Hallo zusammen,

ich brüte gerade über dieser Aufgabe.
Beim linken Grenzwert geht x gegen a und beim Rechten geht h gegen 0. Das scheint der Formeleditor nicht so darzustellen.

Nun habe ich mir schon folgendes überlegt:
Am besten arbeiten wir mit der Definition des Grenzwertes. Diesen haben wir in der Vorlesung wie folgt definiert:
Für alle Folgen [mm] x_{n} [/mm] mit [mm] \limes_{x\rightarrow\infty} x_{n} [/mm] = x* gilt [mm] \limes_{n\rightarrow\infty} f(x_{n}) [/mm] = c mit c [mm] \in \IR. [/mm]
Gleiches kann man also auch schreiben als: [mm] \limes_{x\rightarrow x*} [/mm] f(x) = c ("Limes x gegen x*)

Die Gleichheit der beides Grenzwerte ist ja ziemlich eindeutig, wenn man links f gegen a laufen lässt und rechts h gegen 0. Allerdings habe ich keine Ahnung wie man das formal am besten löst.
Ich tippe stark auf Substitution von x und a+h, aber weiß nicht wie man dort praktisch ansetzt.

Vielen Dank für eure Mühe!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Äquivalenz von Grenzwerten: Antwort
Status: (Antwort) fertig Status 
Datum: 14:47 Mi 06.01.2016
Autor: hippias

[willkommenvh]
Du musst zur vollständigen Lösung der Aufgabe zwei Aussagen beweisen:
1) Wenn [mm] $\lim_{x\rightarrow a} [/mm] f(x)= f(a)$ gilt, dann folgt [mm] $\lim_{h\rightarrow 0} [/mm] f(a+h)= f(a)$
2) Wenn [mm] $\lim_{h\rightarrow 0} [/mm] f(a+h)= f(a)$ gilt, dann folgt [mm] $\lim_{x\rightarrow a} [/mm] f(x)= f(a)$

Dies jeweils mit Hilfe der Definition der einzelnen Symbole zu versuchen, ist sicher eine gute Idee.

Ich mache einmal 2). Es gelte also [mm] $\lim_{h\rightarrow 0} [/mm] f(a+h)= f(a)$. D.h. für jede Nullfolge [mm] $(h_{n})_{n\in \IN}$ [/mm] gilt [mm] $lim_{n\rightarrow} f(a+h_{n})= [/mm] f(a)$.

Zeigen möchte ich, dass für jede Folge [mm] $(x_{n})_{n\in \IN}$ [/mm] mit [mm] $\lim_{n\rightarrow \infty} x_{n}= [/mm] a$ gilt, dass [mm] $lim_{n\rightarrow\infty} f(x_{n})= [/mm] f(a)$.

Dazu sei [mm] $(x_{n})_{n\in \IN}$ [/mm] eine solche Folge. Was hat das ganze mit der Voraussetzung und Nullfolgen zu tun?

Ich betrachte [mm] $h_{n}:= x_{n}-a$. [/mm] Dies ist eine Nullfolge (?) und es gilt [mm] $a+h_{n}= x_{n}$, [/mm] also [mm] $f(a+h_{n})= f(x_{n})$. [/mm] Damit ergibt sich aus der Voraussetzung, dass $f(a)= [mm] \lim_{n\rightarrow\infty} f(a+h_{n})= \lim_{n\rightarrow\infty} f(x_{n})$. [/mm]

Versuche nun 1)

Bezug
                
Bezug
Äquivalenz von Grenzwerten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:28 Mi 06.01.2016
Autor: Kostja23

Vielen lieben Dank für deine ausführliche Antwort :)

Ich habe mal versucht das Ganze nachzuvollziehen und es leuchtet auch größtenteils ein. Nun tue ich mich leider schwer, das Vorgehen auf die erste Bedingung zu abstrahieren. Ich versuche es im Folgenden trotzdem mal.

Also:
Zu beweisen: Aus [mm] $\lim_{x\rightarrow a} [/mm] f(x)= f(a)$ folgt [mm] $\lim_{h\rightarrow 0} [/mm] f(a+h)= f(a)$

Wenn [mm] $\lim_{x\rightarrow a} [/mm] f(x)= f(a)$ gilt, bedeutet das ja nichts anderes als, dass für jede Folge [mm] $(x_{n})_{n\in \IN}$, $\lim_{n\rightarrow \infty} x_{n}= [/mm] a$ gilt, richtig?

Nun möchte ich aus dieser Begebenheit folgern, dass [mm] $lim_{n\rightarrow\infty} f(x_{n})= [/mm] f(a+h)$.
Kann ich dort nun auch wieder so ansetzen, dass ich argumentiere, dass [mm] $(h_{n})_{n\in \IN}$ [/mm] eine Nullfolge ist, somit auf der rechten Seite der Implikation steht, dass [mm] $\lim_{n\rightarrow\infty} f(a+h_{n}) [/mm] = f(a)= [mm] f(x_{n})$? [/mm]

Ich hoffe mein Gedankengang ist wenigstens ein wenig verständlich geworden!

Bezug
                        
Bezug
Äquivalenz von Grenzwerten: Antwort
Status: (Antwort) fertig Status 
Datum: 17:36 Mi 06.01.2016
Autor: hippias


> Vielen lieben Dank für deine ausführliche Antwort :)
>  
> Ich habe mal versucht das Ganze nachzuvollziehen und es
> leuchtet auch größtenteils ein. Nun tue ich mich leider
> schwer, das Vorgehen auf die erste Bedingung zu
> abstrahieren. Ich versuche es im Folgenden trotzdem mal.
>  
> Also:
>  Zu beweisen: Aus [mm]\lim_{x\rightarrow a} f(x)= f(a)[/mm] folgt
> [mm]\lim_{h\rightarrow 0} f(a+h)= f(a)[/mm]
>  
> Wenn [mm]\lim_{x\rightarrow a} f(x)= f(a)[/mm] gilt, bedeutet das ja
> nichts anderes als, dass für jede Folge [mm](x_{n})_{n\in \IN}[/mm],
> [mm]\lim_{n\rightarrow \infty} x_{n}= a[/mm] gilt, richtig?

Nein. Du selber hast die richtige Bedeutung bereits im ersten Post gebracht: [mm] $\lim_{x\rightarrow a} [/mm] f(x)= f(a)$ bedeutet, dass für jede Folge [mm] $(x_{n})_{n\in \IN}$ [/mm] gilt: wenn [mm] $\lim_{n\rightarrow \infty} x_{n}= [/mm] a$, dann gilt [mm] $\lim_{n\rightarrow \infty} f(x_{n})= [/mm] f(a)$.

>  
> Nun möchte ich aus dieser Begebenheit folgern, dass
> [mm]lim_{n\rightarrow\infty} f(x_{n})= f(a+h)[/mm].

Nein, das sollst Du nicht folgern; schau nocheinmal in meine erste Antwort. Liess Dir bitte die Aufgabenstellung durch.

>  Kann ich dort
> nun auch wieder so ansetzen, dass ich argumentiere, dass
> [mm](h_{n})_{n\in \IN}[/mm] eine Nullfolge ist, somit auf der
> rechten Seite der Implikation steht, dass
> [mm]\lim_{n\rightarrow\infty} f(a+h_{n}) = f(a)= f(x_{n})[/mm]?
>  
> Ich hoffe mein Gedankengang ist wenigstens ein wenig
> verständlich geworden!

Erlich gesagt, ist er mir nicht verständlich geworden. Aber: Aller Anfang ist schwer und Übung macht den Meister!

Es sei [mm] $\lim_{x\rightarrow a} [/mm] f(x)= f(a)$ vorausgestzt. D.h. wir wissen nach Definition, dass für jede Folge [mm] $(x_{n})_{n\in \IN}$ [/mm] gilt: wenn [mm] $\lim_{n\rightarrow \infty} x_{n}= [/mm] a$, dann gilt [mm] $\lim_{n\rightarrow \infty} f(x_{n})= [/mm] f(a)$.

Zeigen sollst Du: [mm] $\lim_{h\rightarrow 0} [/mm] f(a+h)= f(a)$.

Das machst Du am besten wieder über die Definition. Also beginnt Dein Beweis damit, dass Du eine beliebige Nullfolge [mm] $(h_{n})_{n\in \IN}$ [/mm] hernimmst und versuchst zu begründen, weshalb [mm] $\lim_{n\rightarrow \infty} f(a+h_{n})= [/mm] f(a)$ gilt.

Kannst Du aus [mm] $(h_{n})_{n\in \IN}$ [/mm] eine Folge [mm] $(x_{n})_{n\in \IN}$ [/mm] konstruieren, für die einerseits [mm] $\lim_{n\rightarrow \infty} x_{n}= [/mm] a$ gilt, und andererseits ein durchsichtiger Zusammenhang zwischen [mm] $f(a+h_{n})$ [/mm] und [mm] $f(x_{n})$ [/mm] gilt, sodass man daraus schliessen kann, dass [mm] $\lim_{n\rightarrow \infty} f(a+h_{n})= [/mm] f(a)$ gilt?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 13h 20m 6. Takota
UAnaRn/Satz Implizite Funktion System
Status vor 16h 17m 3. Dom_89
SDiffRech/Ableitung bilden
Status vor 23h 16m 6. Dom_89
SIntRech/Partielle Integration/Substitu
Status vor 23h 18m 3. Dom_89
SLinGS/Lösungsverhalten LGS
Status vor 2d 2. HJKweseleit
UFina/Effektiver Zinssatz
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]