matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenÄquivalenz von aussagen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Abbildungen" - Äquivalenz von aussagen
Äquivalenz von aussagen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenz von aussagen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 20:45 So 25.10.2009
Autor: Phecda

Hallo
hab eine Aufgabe, hab auch schon einen kleinen Teil gemacht, aber komm nicht so ganz weiter:
[Dateianhang nicht öffentlich]

von a -> b
Für jedes x aus A und jedes y aus B gilt x ungleich y, da A und B disjunkt sind, und da f injektiv ist gilt aufjeden fall f(x)=f(y). also ist auch f(X) geschnitten f(Y) disjunkt.
Soweit die kurzfassung.
bei b->c komm ich jedoch schon anfänglich nicht weiter. kann mir da jmd einen tip geben?
danke

Dateianhänge:
Anhang Nr. 1 (Typ: gif) [nicht öffentlich]
        
Bezug
Äquivalenz von aussagen: Antwort
Status: (Antwort) fertig Status 
Datum: 06:05 Di 27.10.2009
Autor: angela.h.b.


> Hallo
>  hab eine Aufgabe, hab auch schon einen kleinen Teil
> gemacht, aber komm nicht so ganz weiter:
>  [Dateianhang nicht öffentlich]
>  
> von a -> b
> Für jedes x aus A und jedes y aus B gilt x ungleich y, da
> A und B disjunkt sind, und da f injektiv ist gilt aufjeden
> fall f(x)=f(y). also ist auch f(X) geschnitten f(Y)
> disjunkt.
>  Soweit die kurzfassung.

Hallo,

Deiner Kurzfassung kann ich nicht folgen.
Ich sehe auch nicht, daß A und b disjunkt sind.


>  bei b->c komm ich jedoch schon anfänglich nicht weiter.
> kann mir da jmd einen tip geben?

Unter der Voraussetzung ii) ist  eine Mengengleichheit zu zeigen.
Dies macht man, indem man zeigt, daß jede der beiden Mengen eine Teilmenge der anderen ist.

Mehr kann ich hierzu im Moment nicht sinnvoll sagen, weil ich gar nicht weiß, wie weit Du gekommen bist und was Du versucht hast.

Gruß v. Angela





Bezug
                
Bezug
Äquivalenz von aussagen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:48 Mi 28.10.2009
Autor: Phecda

Sorry, aber deine Antwort ist wenig hilfreich. Lass die Frage offen, wenn du mir nicht helfen willst!
(nicht A und B sind disjunkt, sondern X und Y)


Bezug
                        
Bezug
Äquivalenz von aussagen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:00 Mi 28.10.2009
Autor: angela.h.b.


> Sorry, aber deine Antwort ist wenig hilfreich. Lass die
> Frage offen, wenn du mir nicht helfen willst!

Hallo,

davon kann  überhaupt nicht die Rede sein.

Ich habe Dir doch gesagt, daß Du bei dem zweiten Beweis die beiden Teilmengenbeziehungen zeigen mußt,
Ich hätte  mir vorgestellt, jetzt einen Lösungsversuch zu sehen, um konkret helfen zu können - lösen will ich die Aufgabe ja wirklich nicht.

>  (nicht A und B sind disjunkt, sondern X und Y)

Das macht das, was Du schriebst, extrem verständlicher.

Gruß v. Angela





Bezug
                        
Bezug
Äquivalenz von aussagen: also so nicht
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:15 Mi 28.10.2009
Autor: Herby

Sag mal - wo sind wir denn hier [haee]

> Sorry, aber deine Antwort ist wenig hilfreich. Lass die
> Frage offen, wenn du mir nicht helfen willst!

Aber sonst geht es noch, oder!


Herby

Bezug
                                
Bezug
Äquivalenz von aussagen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:14 Sa 31.10.2009
Autor: Phecda

Das ich zeigen muss, dass die beide Seiten jeweils die Teilmenge der anderen Seite sind ist klar.
Also:
y [mm] \in [/mm] f(X\ Y): Es ex x [mm] \in [/mm] A: f(x)=y
x [mm] \in [/mm] X nicht aber in Y.
Was ich noch weiß ist, dass (X\ [mm] Y)\cap [/mm] Y = [mm] \emptyset [/mm] ==> wegen ii f(X\ Y) [mm] \cap [/mm] f(Y) = [mm] \emptyset. [/mm]

Weiter komm ich einfach nicht.
und die Rückrichtung ist mir irgendwie auch schleicherhaft.


Bezug
                                        
Bezug
Äquivalenz von aussagen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:42 Sa 31.10.2009
Autor: Al-Chwarizmi


>  und die Rückrichtung ist mir irgendwie auch
>  schleicherhaft.


... und was da im Schleier herumschleicht, hat
    wohl irgendwie mit Halloween zu tun ... ;-)


Bezug
                                        
Bezug
Äquivalenz von aussagen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:50 Sa 31.10.2009
Autor: Al-Chwarizmi


> Das ich zeigen muss, dass die beide Seiten jeweils die
> Teilmenge der anderen Seite sind ist klar.
>  Also:
>  y [mm]\in[/mm] f(X\ Y): Es ex x [mm]\in[/mm] A: f(x)=y
>  x [mm]\in[/mm] X nicht aber in Y.
>  Was ich noch weiß ist, dass (X\ [mm]Y)\cap[/mm] Y = [mm]\emptyset[/mm] ==>

> wegen ii f(X\ Y) [mm]\cap[/mm] f(Y) = [mm]\emptyset.[/mm]
>  
> Weiter komm ich einfach nicht.
>  und die Rückrichtung ist mir irgendwie auch
> schleierhaft.


Hallo Phecda,

könntest du nochmal angeben, um welchen Teil-
beweis es hier gehen soll ? Von welchen zwei der
4 Aussagen (i),(ii),(iii),(iv) willst du die Äquivalenz
nachweisen ?

LG


  


Bezug
                                                
Bezug
Äquivalenz von aussagen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:51 Sa 31.10.2009
Autor: Phecda

von ii) --> iii) will ich beweisen...
hat jmd eine idee?

Bezug
                                                        
Bezug
Äquivalenz von aussagen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 06:16 So 01.11.2009
Autor: angela.h.b.


> von ii) --> iii) will ich beweisen...
>  hat jmd eine idee?

ja.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]