matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraÄquivalenzbeweis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - Äquivalenzbeweis
Äquivalenzbeweis < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenzbeweis: Korrektur
Status: (Frage) für Interessierte Status 
Datum: 22:34 Do 27.10.2005
Autor: Moe007

Hallo,
ich hab hier einen Beweis, bei dem ich mir nicht sicher bin, ob ich das richtig gemacht habe. Ich hoffe, dass mich jemand korrigieren wird, falls etwas nicht richtig sein sollte.

Aufgabe:
Man zeige für eine nichtleere Teilmenge [mm] A_{0} [/mm] einer Booleschen Algebra A die Äquivalenz von
1. [mm] A_{0} [/mm] ist Unteralgebra von A
2. [mm] A_{0} \cup A_{0} \subset A_{0} [/mm] und  [mm] \overline{A}_{0} \subset A_{0} [/mm] mit [mm] \overline{A}_{0} [/mm] ist das Komplement zu [mm] A_{0} [/mm]
3. [mm] A_{0} \cap A_{0} \subset A_{0} [/mm] und  [mm] \overline{A}_{0} \subset A_{0} [/mm]
4.  [mm] A_{0} [/mm] | [mm] A_{0} \subset A_{0} [/mm] mit x|y := [mm] \overline{(x \cap y)}, [/mm] x,y [mm] \in [/mm] A beliebig
5. [mm] \overline{A_{0} \cup A_{0}} \subset A_{0} [/mm] mit x,y [mm] \in [/mm] A beliebig

(1) [mm] \to [/mm] (2):
Sei [mm] A_{0} [/mm] Unteralgebra von A.
Sei x,y [mm] \in A_{0}. [/mm] Da [mm] A_{0} [/mm] Unteralgebra von A ist, gilt: x [mm] \cup [/mm] y [mm] \in A_{0}, [/mm] x [mm] \cap [/mm] y [mm] \in A_{0}, \overline{x}, \overline{y}, \overline{x \cup y }, \overline{x \cap y } \in A_{0}, [/mm] also folgt daraus (2).

(2) [mm] \to [/mm] (3):
Gelte (2). [mm] \overline{A}_{0} \subset A_{0} [/mm] gilt nach Voraussetzung also bleibt nur noch [mm] A_{0} \cap A_{0} \subset A_{0} [/mm] z.z.
Sei x [mm] \cup [/mm] y [mm] \in A_{0}. [/mm] Da [mm] \overline{A}_{0} \subset A_{0} [/mm] gilt [mm] \overline{x \cup y} \subset A_{0}. [/mm] Nach de-Morgan-Regel folgt [mm] \overline{x} \cap \overline{y}. [/mm] Da x [mm] \cup [/mm] y \ in [mm] A_{0}, [/mm] ist auch x,y [mm] \in A_{0} [/mm] also auch [mm] \overline{x}, \overline{y} \in A_{0} [/mm] (wg. Voraussetzung). Daher ist auch [mm] \overline{x} \cup \overline{y} \in A_{0} [/mm] und [mm] \overline{\overline{x} \cup \overline{y}} [/mm] \ in [mm] A_{0} [/mm] . Nach de-Morgan-Regel folgt [mm] \overline{x \cap y} \in A_{0}, [/mm] also auch  [mm] \overline{\overline{x \cap y}} [/mm] = x [mm] \cap [/mm] y [mm] \in A_{0}. [/mm]

(3) [mm] \to [/mm] (4):
Gelte (3). Sei x [mm] \cap [/mm] y [mm] \in A_{0} [/mm] mit [mm] \overline{x \cap y} \in A_{0}. [/mm] Daraus folgt unmittelbar die Beh. [mm] \overline{x \cap y} [/mm] = x | y [mm] \in A_{0}. [/mm]

(4) [mm] \to [/mm] (5):
Gelte (4). Sei [mm] \overline{x \cap y} \in A_{0}, [/mm] nach de-Morgan gilt [mm] \overline{x} \cup \overline{y} \in A_{0}. [/mm] Daraus folgt: [mm] \overline{x}, \overline{y} \in A_{0}. [/mm] Dann: [mm] \overline{x} [/mm] | [mm] \overline{y} [/mm]  = [mm] \overline{\overline{x} \cap \overline{y}} [/mm]  = [mm] \overline{\overline{x}} \cup \overline{\overline{y}} [/mm] = x [mm] \cup [/mm] y [mm] \in A_{0}. [/mm]
Dann ist (x [mm] \cup [/mm] y) | (x [mm] \cup [/mm] y) [mm] \in A_{0}, [/mm] also [mm] \overline{(x \cup y) \cap (x \cup y)} [/mm] = [mm] \overline{(x \cup y)} \in A_{0}, [/mm] also die Beh.

(5) [mm] \to [/mm] (1):
Gelte (5), also ist [mm] \overline{(x \cup y)} \in A_{0}. [/mm] Nach de Morgan folgt [mm] \overline{(x \cup y)} [/mm] = [mm] \overline{x} \cap \overline{y} \in A_{0}. [/mm]
Weiter ist [mm] \overline{\overline{(x \cup y)} \cup \overline{(x \cup y)}} [/mm] = [mm] \overline{(\overline{x} \cap \overline{y}) \cup (\overline{x} \cap \overline{y})} [/mm] = [mm] \overline{(\overline{x} \cap \overline{y})} [/mm] = x [mm] \cup [/mm] y [mm] \in A_{0} [/mm]
Daraus folgt auch x,y [mm] \in A_{0}, [/mm] also auch x [mm] \cap [/mm] y [mm] \in A_{0}. [/mm]
Weiter ist [mm] \overline{(x \cup y) \cup (x \cup y)} [/mm] = [mm] \overline{(x \cup y)} [/mm] = [mm] \overline{x} \cap \overline{y} \in A_{0}, [/mm] also ist auch [mm] \overline{x}, \overline{y} \in A_{0}. [/mm]
Weiter ist [mm] \overline{(x \cap y) \cup (x \cap y)} [/mm] = [mm] \overline{(x \cap y)}. [/mm]
Also ist (1) gezeigt.

Stimmen die Schritte alle? Falls nicht, bitte ich um Korrektur. Ich bin mir vor vorallem beim letzten Schritt sehr unsicher, ob das richtig ist, was ich da gemacht hab.
Vielen Dank für die Hilfe.
Moe

        
Bezug
Äquivalenzbeweis: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:50 Do 03.11.2005
Autor: matux

Hallo Moe!


Wir bedauern, dass Deine Frage nicht (vollständig) in der von dir eingestellten Fälligkeitszeit beantwortet wurde.

Der wahrscheinlichste Grund dafür ist, dass ganz einfach niemand, der dir hätte helfen können, im Fälligkeitszeitraum online war. Bitte bedenke, dass jede Hilfe hier freiwillig und ehrenamtlich gegeben wird.

Wie angekündigt gehen wir nun davon aus, dass du an einer Antwort nicht mehr interessiert bist. Die Frage taucht deswegen nicht mehr in der Liste der offenen Fragen, sondern nur noch in der Liste der Fragen für Interessierte auf.
Falls du weiterhin an einer Antwort interessiert bist, stelle einfach eine weitere Frage in dieser Diskussion.

Wir wünschen dir beim nächsten Mal mehr Erfolg! [kleeblatt]

Viele Grüße,
Matux, der Foren-Agent

Allgemeine Tipps wie du dem Überschreiten der Fälligkeitsdauer entgegenwirken kannst findest du in den Regeln für die Benutzung unserer Foren.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]