matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenÄquivalenzklassen 2x2 Matrizen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Matrizen" - Äquivalenzklassen 2x2 Matrizen
Äquivalenzklassen 2x2 Matrizen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenzklassen 2x2 Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:42 Mi 04.05.2011
Autor: kushkush

Aufgabe
Sei [mm] $M=M_{K}(2)$ [/mm] mit [mm] $K=F_{2}$. [/mm] Man zeige, dass [mm] $\# \tilde{M}=6.$ [/mm]

Hallo,

die sechs Äquivalenzklassen sind 6 und das kann man überprüfen mit gleicher Determinante, gleiche Jordanform, gleiche Spur, gleiche charakteristische Matrize, gleicher Rang und die Nullmatrix.

Ich denke ich habe sie erraten können weil die Klassen alle Matrizen 2x2 Matrizen sind mit: [mm] $a_{12}a_{22}=a_{12}a_{21}$ [/mm] und jeweils Eigenwertpaaren $(0,0), (0,1)$, $(1,0)$ und $(1,1)$ [mm] $\vektor{1&0\\0&1}$,\vektor{1&0\\0&0},\vektor{0&0\\0&0},\vektor{1&0\\0&-1}, \vektor{-1&0\\0&-1},\vektor{-1&0\\0&0}$ [/mm]

Ist das richtig gerechnet und fehlt etwas?



Ich habe diese Frage in keinem anderen Forum gestellt.



Danke und Gruss
kushkush



        
Bezug
Äquivalenzklassen 2x2 Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:53 Do 05.05.2011
Autor: angela.h.b.


> Sei [mm]M=M_{K}(2)[/mm] mit [mm]K=F_{2}[/mm]. Man zeige, dass [mm]\# \tilde{M}=6.[/mm]

Hallo,

irgendwie habe ich schon wieder was zu mosern...
Aber es ist wirklich wichtig, daß die Aufgabenstellung klar ist.

Du mußt sagen, was [mm] \tilde{M} [/mm] bedeuten soll.
Na gut, ich kann es mir sogar zusammenreimen: die menge der Äquivalenzklassen von M bzgl der Äquivalenzrelation [mm] \sim. [/mm] Richtig?

Aber nächste Frage: welche Äquivalenzrelation?
Das müßte man schon dazu sagen.
Nicht jeder ist Hellseher.
So: [mm] A\sim [/mm] B [mm] \gdw [/mm] A ist ähnlich zu B ?


>  
> Hallo,
>  
> die sechs Äquivalenzklassen sind 6

Aha.


> Ich denke ich habe sie erraten können weil die Klassen
> alle Matrizen 2x2 Matrizen sind mit:
> [mm]a_{12}a_{22}=a_{12}a_{21}[/mm][/mm] und jeweils Eigenwertpaaren
> [mm](0,0), (0,1)[/mm], [mm](1,0)[/mm] und [mm](1,1)[/mm]
> [mm]\vektor{1&0\\ 0&1}[/mm][mm] ,\vektor{1&0\\0&0},\vektor{0&0\\0&0},\vektor{1&0\\0&-1}, \vektor{-1&0\\0&-1},\vektor{-1&0\\0&0}$[/mm] [/mm]
>
> Ist das richtig gerechnet und fehlt etwas?

Mich stimmt skeptisch, daß hier manches doppelt vorkommt, denn es ist ja -1=1.

Da solltest du nochmal genauer überlegen.

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]