Äquivalenzrelation < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei M eine Menge. Zeigen Sie:
Sei R eine Relation auf M. Es gibt eine Äquivalenzrelation [mm] \sim{R} [/mm] auf M, die R enthält und folgende Eigenschaft hat: Jede Äquivalenzrelation auf M, die R enthält, enthält auch [mm] \sim{R}. [/mm] |
Hallo,
hab irgendwie Probleme einen Ansatz für diese Aufgabe zu finden.
Ich weiß was eine Äquivalenzrelation ist und dass sie als Eigenschaft Transivität, Reflexivität und Symmetrie hat. Nur iwie komm ich damit nicht weiter.
Wäre toll, wenn mir jemand helfen könnte...
Danke!
Liebe Grüße
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:24 So 08.11.2009 | Autor: | uliweil |
Hallo pinkdiamond,
letztlich besteht die Aufgabe aus zwei Teilen:
Man muss eine Äquivalenzrelation [mm] \sim [/mm] R konstruieren, die R umfasst:
R [mm] \subseteq \sim [/mm] R [mm] \subseteq [/mm] M x M. Und genau da liegt der Hase im Pfeffer. Man könnte ja einfach M x M selber nehmen, aber das verhindert der zweite Teil der Aufgabe, die Minimalitätsforderung für [mm] \sim [/mm] R. Es soll nämlich die "kleinste" mögliche Äquivalenzrelation gefunden werden, die R umfasst.
Ja, dann versuch doch mal diese [mm] \sim [/mm] R zu konstruieren.
Gruß
Uli
PS: Tut mir leid, dass die Beanrtwortung so lange gedauert hat, ich hatte Probleme mit meinem Rechner.
|
|
|
|
|
Hallo,
vielen Dank für deine Antwort.
Um ehrlich zu sein versteh ich sie aber nicht wirklich.
Wie konstruiere ich denn eine Äquivalenzrelation?
Lg pinkdiamond
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:11 So 08.11.2009 | Autor: | uliweil |
Hallo pinkdiamond,
was ist eine Relation? Antwort: Teilmenge eines kartesischen Produktes, also sei M = {a, b, c}, dann ist M x M = {(a,a), (a,b), (a,c), (b,a), (b,b), (b,c), (c,a), (c,b), (c,c)}.
Weiter im Beispiel, sei R = {(a,a), (b,b), (a,b)}; dies ist eine Relation, weil Teilmenge von M x M. Ist es aber eine Äquivalenzrelation? Nein, denn die erste Eigenschaft für Äquivalenzrelationen ist verletzt ( (c,c) [mm] \not\in [/mm] R ). Nimmt man nun (c,c) zu R hinzu ("Konstruieren" von [mm] \sim [/mm] R), ist schon mal die erste Eigenschaft erfüllt ...
Gruß
Uli
|
|
|
|
|
Hallo,
hieße das dann, dass [mm] \sim{R} [/mm] := {(a,a), (b,b), (a,b), (c,c), (b,a)}
Habe Aufgrund der Symmetrie noch (b,a) dazugenommen. Die Transitivität sagt ja nichts über die Elemente der Menge aus sofern [mm] a\not=b\not=c [/mm] ?
Hoffe das stimmt so?
Was muss ich denn jetzt noch tun um die kleinste mögliche Äquivalenzrelation zu finden?
Danke für deine Hilfe!!
Liebe Grüße,
pinkdiamond
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:20 Di 10.11.2009 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|