matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDiskrete Optimierungaffin linear
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Diskrete Optimierung" - affin linear
affin linear < Optimierung < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Optimierung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

affin linear: Augabe/Beweis
Status: (Frage) beantwortet Status 
Datum: 17:11 Sa 20.01.2007
Autor: sonnenfee23

Aufgabe
Zeigen Sie:
Eine Funktion f: [mm] \IR^{n} \to \IR [/mm] ist affin-linear [mm] \gdw [/mm] f die Darstellung f(x) = [mm] c^{T}*x [/mm] +a mit c [mm] \in \IR^{n} [/mm] und a [mm] \in \IR [/mm] hat

Hallo!

Ich soll diese Aufgabe mit den Definitionen der linearen Optimierung lösen  und weiß nicht wie ich da vorgehen soll, dies ist zur Klausurvorbereitung,... Bitte um Hilfe, da ich grad nicht viel verstehe,...

MfG Susi

Danke schonmal im Voraus!

        
Bezug
affin linear: Antwort
Status: (Antwort) fertig Status 
Datum: 18:05 So 21.01.2007
Autor: felixf

Hallo Susi!

> Zeigen Sie:
> Eine Funktion f: [mm]\IR^{n} \to \IR[/mm] ist affin-linear [mm]\gdw[/mm] f
> die Darstellung f(x) = [mm]c^{T}*x[/mm] +a mit c [mm]\in \IR^{n}[/mm] und a
> [mm]\in \IR[/mm] hat
>  Hallo!
>  
> Ich soll diese Aufgabe mit den Definitionen der linearen
> Optimierung lösen  und weiß nicht wie ich da vorgehen soll,
> dies ist zur Klausurvorbereitung,... Bitte um Hilfe, da ich
> grad nicht viel verstehe,...

Schreib doch mal hierhin, wie bei euch definiert ist, dass eine Funktion affin-linear ist.

LG Felix


Bezug
                
Bezug
affin linear: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:28 So 21.01.2007
Autor: sonnenfee23

Aufgabe
Affin linear bedeutet laut unserer Vorlesung:

f ist affin linear, wenn f konvex und konkav ist.

Hallo!
Definition von konvex aus der Vorlesung:
Eine Funktion f : S [mm] \to [/mm] [- [mm] \infty, \infty] [/mm] heißt konvex, falls ihr Epigraph eine konvexe Menge in [mm] \IR^n \times \IR [/mm] ist.

Definition konkav:

f heißt konkav, wenn -f konvex ist.

Bezug
                        
Bezug
affin linear: Antwort
Status: (Antwort) fertig Status 
Datum: 20:14 Mo 22.01.2007
Autor: hammel123

Also an sich könnte man ja eine rein geometrische interpretation vorschlagen. Die affin lineare Funktion lässt sich ja z.b. im [mm] R^2 [/mm] als gerade auffassen. Das wiederum heisst,dass der epigraph auf jeden fall konvex ist und am Beispiel der Gerade sieht man auch sofort, dass -f konvex ist.
Ich weiss nicht sehr mathematisch, aber vielleicht hilfts weiter :)
Grüße,
A

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Optimierung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]