matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / Vektorrechnungaffine Abbildungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra / Vektorrechnung" - affine Abbildungen
affine Abbildungen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

affine Abbildungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:00 Fr 11.05.2012
Autor: alpenmilch

Ich muss mich für die Abiturprüfung mit dem Thema affine Abbildungen befassen, doch leider habe ich noch nie im Leben davon gehört!
Was genau versteht man denn unter "affine Abbildungen im xy-Koordinatensystem" ? Angeblich gibt es drei Möglichkeiten, sie dazustellen. Leider habe ich nirgendswo was dazu gefunden.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
affine Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:11 Fr 11.05.2012
Autor: Stoecki

eine affine abbildung ist eine lineare abbildung, bei der zusätzlich noch um einen vektor verschoben wird. sagen wir du hast einen vektor [mm] \vektor{x \\ y} [/mm] gegeben. dann hätte eine affine abblidung die form
f(x,y) = [mm] \pmat{ a_{11} & a_{12} \\ a_{21} & a_{22} } [/mm] * [mm] \vektor{x \\ y} [/mm] + [mm] \vektor{b_1 \\ b_2} [/mm]
ich weiß jetzt nicht, ob das eine andere darstellung ist, aber wenn man das auflöst bekommen man eine gleichung für die neuen koordinaten raus. also:
[mm] \vektor{f_1(x,y) \\ f_2(x,y)} [/mm] = [mm] \vektor{a_{11} * x + a_{12}*y + b_1 \\ a_{21} * x + a_{22}*y + b_2} [/mm]

ich hoffe das hilft dir weiter.

gruß bernhard

Bezug
        
Bezug
affine Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:58 Sa 12.05.2012
Autor: angela.h.b.


> Ich muss mich für die Abiturprüfung mit dem Thema affine
> Abbildungen befassen, doch leider habe ich noch nie im
> Leben davon gehört!

Hallo,

die erste Adresse wäre natürlich der Lehrer, jedenfalls sofern Du eine Schule besuchst.

> Was genau versteht man denn unter "affine Abbildungen im
> xy-Koordinatensystem" ?

> Stoecki hat Dir ja schon etwas dazu gesagt.

Ich gehe davon aus, daß Ihr in der Schule zumindest vorwiegend einen Spezialfall der affinen Abbildungen betrachtet habt, nämlich die linearen Abbildungen.
Möglicherweise ist Dir dieser Begriff vertraut, und Du hast einen Anhaltspunkt, wo in Deinen Unterlagen bzw. Deinem Schulbuch Du nachschlagen mußt.

>Angeblich gibt es drei

> Möglichkeiten, sie dazustellen. Leider habe ich nirgendswo
> was dazu gefunden.

Ja.

Lineare Abbildungen kannst Du ausdrücken

- durch die Funktionsgleichung, etwa [mm] f(\vektor{x\\y})=\vektor{1x+2y\\3x+4y}, [/mm]

- durch die Angabe der Abbildungsmatrix, im Beispiel wäre dies die Matrix [mm] A=\pmat{1&2\\3&4}, [/mm] denn [mm] f(\vektor{x\\y})=pmat{1&2\\3&4}*\vektor{x\\y} [/mm]

- durch die Angabe der Funktionswerte der Vektoren einer Basis, etwa der der Standardbasis, im Beispiel [mm] f(\vektor{1\\0})=\vektor{1\\3}, f(\vektor{0\\1})=\vektor{2\\4}. [/mm]

Ich hoffe, daß Du mit diesen Hinweisen dem, was Du lernen mußt, auf die Spur kommst.

Wenn noch nicht alles geklärt ist, stell bitte nicht wieder einfach die Frage  auf "unbeantwortet", sondern stell eine Rückfrage, in welcher Du die Unklarheiten formulierst.

LG Angela

>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]