matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebraaffine Ebene
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - affine Ebene
affine Ebene < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

affine Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:41 Di 20.07.2004
Autor: Jessica

Hallo alle zusammen. ICh ahbe hier eine Aufageb und weiß nicht 100% wie ich das machen soll. Könntet ihr euch mal meine Gedanken dazu anschauen und mir sagen was ich noch verändern muss, bzw. was noch zu machen ist. Die Aufgabe lautet:

Es seien E die affine Ebene in [mm]\IR^{3\times1}[/mm] durch die Punkte

[mm]P_0=\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, P_1=\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, P_2=\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}[/mm]

und [mm]f:E\rightarrow\IR^{2\times1}[/mm] eine affine Abbildung mit [mm]f(P_0)={1 \choose 1}, f(P_1)={1 \choose 0}, f(P_2)={0 \choose 1}[/mm]. Bestimmen Sie alle Punkte [mm]P\inE[/mm] mit [mm]f(P)={1 \choose 1}[/mm].

Also:

[mm]P_0,P_1,P_2[/mm] spannen dann ja eine Ebene parallel zu x-y-Ebene in der Höhe 1 auf. Die affine Abbildung f bildet, so vermute ich, wie folgt ab (da [mm]f(P_0)={1 \choose 1}[/mm]...)

[mm]f:E\rightarrow\IR^{2\times1}[/mm]
[mm]P\rightarrow{x \choose y}[/mm]

Dann würden alle Punkt P für die [mm]f(P)={1 \choose 1}[/mm] gilt der Gestalt [mm]\begin{pmatrix} 1 \\ 1 \\ z \end{pmatrix} [/mm] mit [mm]z\in\IR[/mm] sein. Das sind alles Punkte die auf einer Geraden senkrecht zur Ebene E. Wenn man sie dann schneidet, wäre der einzige Punkt ja nur [mm]P_0[/mm]. Wie kann ich jetzt zeigen, dass f genau so abbildet wie ich vermute? ODer ist mein Ansatz vollkommen falsch und ich muss anders vorgehen? Bin ja mal gespant auf eure Meinung.

Bis denne
Jessica

        
Bezug
affine Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 23:26 Di 20.07.2004
Autor: Wurzelpi

Hallo Jessica!

Du liegst richtig.
Nur [mm] P_0 [/mm] wird so abgebildet.

Versuch es doch mit einem Widerspruchsbeweis, der wie folgt beginnen könnte:

Sei [mm] P_3 [/mm] aus E, [mm] P_0 [/mm] verschieden von [mm] P_3 [/mm] und [mm] f(P_0)=f(P_3). [/mm]
Für [mm] P_3 [/mm] gilt doch:
[mm] P_3 [/mm] = [mm] P_0 [/mm] + [mm] s*(P_0P_1) [/mm] + [mm] t*(P_0P_2) [/mm] für s, t aus den reelen Zahlen.

Schaue Dir dann mal die Definition von affin an, besonders den zweiten Teil und berechne einfach mal [mm]\phi_f[/mm][mm] (P_0P_3). [/mm]
(ergebnis: Nullvektor).
Berechne den selben AUsdruck nochmal,doch diesmal setze für [mm] P_3 [/mm] die obere Darstellung ein.
(Ergebnis: s=t=0).

Somit wäre aber [mm] P_0 =P_3. [/mm]
Das ist der gesuchte Widerspruch.

Fertig ist!

Gruss,
Wurzelpi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]