matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-Funktionenallgemeine Funktionsableitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Exp- und Log-Funktionen" - allgemeine Funktionsableitung
allgemeine Funktionsableitung < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

allgemeine Funktionsableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:18 Mi 08.11.2006
Autor: Kroete

Aufgabe
Wir sollen aus den 4 folgenden Funktionen einen allgemeine Ableitungsformel entwickeln, die dann für alle erdenklichen Ableitungen von f gelten soll.
[mm] f(x)=(x^2-2*x)*e^{-x} [/mm]
f´(x)= [mm] (-x^2+4*x-2)*e^{-x} [/mm]
f''(x)= [mm] (x^2-6*x+6)*e^{-x} [/mm]
[mm] f'''(x)=(-x^2+8*x-12)*e^{-x} [/mm]

Der Anfang unserer Gleichung ist schon gegeben:
f hoch n(x)= [(-1)hoch n*x²......]*e hoch -x

Wär nett wenn jemand helfen würde...
[mm] e^{-x} [/mm] sollte eig. e hoch -x heißen

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.  

[mm] f(x)=(x²-2*x)*e^{-x} [/mm]
f´(x)=    [mm] (-x²+4*x-2)*e^{-x} [/mm]
f''(x)=  [mm] (x²-6*x+6)*e^{-x} [/mm]
[mm] f'''(x)=(-x²+8*x-12)*e^{-x} [/mm]

Der Anfang unserer Gleichung ist schon gegeben:
f hoch n(x)= [(-1)hoch n*x²......]*e hoch -x

Wär nett wenn jemand helfen würde...
[mm] e^{-x} [/mm] sollte eig. e hoch -x heißen

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
allgemeine Funktionsableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:31 Do 09.11.2006
Autor: M.Rex

Hallo Andrea

> Wir sollen aus den 4 folgenden Funktionen einen allgemeine
> Ableitungsformel entwickeln, die dann für alle erdenklichen
> Ableitungen von f gelten soll.
>  [mm]f(x)=(x^2-2*x)*e^{-x}[/mm]
>  f´(x)= [mm](-x^2+4*x-2)*e^{-x}[/mm]
>  f''(x)= [mm](x^2-6*x+6)*e^{-x}[/mm]
>  [mm]f'''(x)=(-x^2+8*x-12)*e^{-x}[/mm]

Dann schau doch mal, was hier passiert.
1)Die Vorzeichen im rationalen Term ändern sich jedes Mal.
2) es gilt: Der Koeffizient vor dem x erhöht sich um 2.
3) der von x unabhängige Teil setzt sich aus dem Koeffizienten vor dem x und dem freien Teil aus der vorigen Ableitung zusammen, er ist die Summe daraus)

Wenn wir mit folgender Funktion anfangen [mm] f(x)=(x²+nx)e^{-x} [/mm]
Dann gilt für die erste Ableitung
[mm] f'(x)=(-x²-(n+2)x+(n+0))*e^{-x} [/mm]
und [mm] f''(x)=(x²+(n+4)-((n+2)+n))e^{-x} [/mm]

das heisst, die geraden Ableitungen haben positive Vorzeichen, ausser bei dem freien Teil, die ungeraden negative.

Also
[mm] f^{i}(x)=[((-1)^{i}x²)+((-1)^{i}(n+2i)x)-((-1)^{i}(n+2(i-1)))]e^{-x} [/mm]

[mm] f^{i}ist [/mm] die i-te Ableitung.

Marius





Bezug
                
Bezug
allgemeine Funktionsableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:25 Do 09.11.2006
Autor: Kroete

Danke Marius!
Das mit den Vorzeichen hätte ich auch noch hinbekommen aber dann wusste ich einfach nich mehr weiter! Vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]