matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Reihenarithmetische Folge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - arithmetische Folge
arithmetische Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

arithmetische Folge: benötige Denkanstoß
Status: (Frage) beantwortet Status 
Datum: 14:30 Do 01.12.2005
Autor: Gwin

hallo zusammen...
ich grübele jetzt bereits seit 2 tagen an folgender aufgabe...

Von einer arithmetischen Folge von 4 Gliedern ist die Summe aller Glieder 26 und das Produkt der ersten beiden Glieder um 1 kleiner als das letzte Glied.
Berechnen Sie die Glieder der Folge.

Durch einfaches ausprobieren hatte ich die aufgabe in 5 min. gelöst...

Gibt es für diese art aufgabenstellung auch eine mathematische Vorgehensweise?

Meine überlegungen sind bisher folgende:

aus dem text entnommen:

a1+a2+a3+a4=26
und
a1*a2=a4-1

desweiteren kann man ja noch sagen da es sich um eine arithmetische folge handelt:

a2-a1=d
a3-a2=d
a4-a3=d

das Bildungsgesetz: [mm] a_{n}=a_{1}+(n-1)*d [/mm]

nun habe ich aber die Schwierigkeit aus den gegebenen Formeln die lösung zu errechnen.
kann mir da jemand mal auf die sprünge helfen?

mfg Gwin

PS:bitte entschuldigt die rechtschreibfehler :)...

        
Bezug
arithmetische Folge: Tipps
Status: (Antwort) fertig Status 
Datum: 15:09 Do 01.12.2005
Autor: Roadrunner

Hallo Gwin!


Uns steht noch die Summenformel für arithmetische Folgen zur Verfügung:

[mm] $s_n [/mm] \ = \ [mm] \bruch{n}{2}*\left(a_1+a_n\right) [/mm] \ = \ [mm] \bruch{n}{2}*\left[2*a_1 + (n-1)*d\right]$ [/mm]


Also:

[mm] $s_4 [/mm] \ = \ [mm] \bruch{4}{2}*\left(a_1+a_4\right) [/mm] \ = \ 26$    [mm] $\gdw$ $a_1 [/mm] + [mm] a_4 [/mm] \ = \ [mm] a_1 [/mm] + [mm] \underbrace{a_1+3d }_{= \ a_4} [/mm] \ = \ [mm] \red{2a_1+3d \ = \ 13}$ [/mm]


Und durch Einsetzen von [mm] $a_2 [/mm] \ = \ [mm] a_1 [/mm] + d$ und [mm] $a_4 [/mm] \ = \ [mm] a_1 [/mm] + 3d$ in die 2. Gleichung von Dir erhalten wir:

[mm] $a_1*a_2 [/mm] \ = \ [mm] a_4-1$ $\gdw$ $\blue{a_1*\left(a_1+d\right) \ = \ a_1+3d-1}$ [/mm]


Damit haben wir ein Gleichungssystem aus zwei Gleichungen mit den beiden Unbekannten [mm] $a_1$ [/mm] und $d_$, das Du sicher lösen kannst.


Gruß vom
Roadrunner


Bezug
                
Bezug
arithmetische Folge: Vielen Dank
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:58 Do 01.12.2005
Autor: Gwin

hi Roadrunner...

Vielen dank für deine extrem ausführliche lösung...
werde mich gleich mal ran machen und versuchen mit den neuen erkentnissen die aufgabe zu lösen...

mfg Gwin

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]