matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Reihenarithmetische Folge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - arithmetische Folge
arithmetische Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

arithmetische Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:00 Di 11.07.2006
Autor: tinkabell

Aufgabe
Eine arithmetische Folge n-ter Ordnung beginnt mit: 1,-1,0,2,3,1,-6,-20,...
Welches Polynom von ebendieser Ordnung erzeugt die Folge?

Mir is ja klar, dass das ne Folge 3. Ordnung ist.. aber was da gefragt wird ist mir nicht wirklich bewusst.. kann mir bitte jemand helfen?? Danke ;)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
arithmetische Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 15:32 Di 11.07.2006
Autor: Hanno

Hallo.

Was genau ist unklar? Hast du den Begriff der arithmetischen Folge n-ter Ordnung verstanden?

Also: eine Folge [mm] $(a_n)_{n\in \IN}$ [/mm] heißt arithmetisch der Ordnung $k$, wenn ein Polynom [mm] $p\in\IR[x]$ [/mm] vom Grad $k$ existiert, sodass [mm] $a_n=p(n)$ [/mm] für alle [mm] $n\in \IN$ [/mm] gilt.

Dies ist genau dann der Fall, wenn $a_^{(k+1)}$ die Nullfolge und $a_^{(i)}$ für [mm] $i\leq [/mm] k$ keine Nullfolge ist. Dabei seien [mm] $a^{(i)}_n:=a^{(i-1)}_{n+1}-a^{(i-1)}_n, a^0_n:=a_n$ [/mm] die von [mm] $(a_n)_{n\in\IN}$ [/mm] erzeugten Differenzenfolgen.

Über letztgennantes Kriterium wirst du wohl eingesehen haben, dass die dir gegebene Folge arithmetisch der Ordnung 3 ist.

Um nun die Koeffizienten des erzeugenden Polynomes zu bestimmen, setzen wir [mm] $p(n)=c_0+c_1 n+c_2 n^2+c_3 n^3$. [/mm] Daraus folgt

[mm] $c_0 [/mm] + [mm] c_1 [/mm] + [mm] c_2 [/mm] + [mm] c_3 [/mm] = p(1) = [mm] a_1$ [/mm]
[mm] $c_0 [/mm] + [mm] 2c_1+4c_2+8c_3=p(2)=a_2$ [/mm]
[mm] $c_0 [/mm] + [mm] 3c_1 [/mm] + [mm] 9c_2+27c_3 [/mm] = [mm] p(3)=a_3$ [/mm]
[mm] $c_0+4c_1+16c_2+64c_3 [/mm] = [mm] p(4)=a_4$, [/mm]

d.h. [mm] $(c_0,...,c_3)$ [/mm] ist die (eindeutig bestimmte) Lösung von

[mm] $\pmat{1 & 1 & 1 & 1\\ 1 & 2 & 4 & 8\\ 1 & 3 & 9 & 27\\ 1 & 4 & 16 & 64}\vektor{a\\b\\c\\d}=\vektor{a_1\\ a_2\\a_3\\a_4}$. [/mm]

Genau dieses Gleichungssystem musst du für die dir gegebene Folge lösen.

Zwar ist es nur eine notwendige Bedingung, aus dem obigen (Existenz-)Satz folgt aber, dass das durch die so gefundenen Koeffizienten [mm] $c_0,...,c_3$ [/mm] gebildete Polynom die dir gegebene Folge erzeugt.


Liebe Grüße,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]