assozierte primideale minimal < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei R ein noetherscher Ring mit den minimalen Primidealen [mm] P_{1},...,P_{n}, [/mm] sodass die Lokalisierung an jedem Primideal nullteilerfrei ist. Zeigen Sie, dass die [mm] P_{i} [/mm] gerade die zum Nullideal assozierten Primideale sind und dass A isomorph ist zu [mm] \bigoplus_{i=1}^{n}A/P_{i} [/mm] |
Heyho!
Also nach einem Satz aus der VL sind die zu einem Ideal assozierten Primideale in einem noetherschen Ring gerade die Quotientenideale (I:x), also im Falle des Nullideals die Annihilatoren von Ringelementen. Aber warum sind die Annihilatoren minimal? Wenn man sich ein Primideal zwischen (0) und Ann(x) hernimmt, das echt größer ist als die Null, wie kann man zeigen, dass es dann ganz Ann(x) ist? Da geht doch bestimmt irgendwie ein, dass jede Lokalisierung an nem Primideal ein Integritätsbereich ist.
Die zweite Aussage der Aufgabe erinnert ein wenig an den chinesischen Restsatz...Wäre [mm] (0)=\bigcap_{i=1}^{n}P_{i} [/mm] so würde das direkt aus diesem folgen, aber es ist doch [mm] (0)=\bigcap_{i=1}^{n}Q_{i} [/mm] wobei [mm] Q_{i} P_{i}- [/mm] primär... mmh?
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 07:22 Fr 18.11.2011 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|