matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-Analysisauflösen nach x
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Schul-Analysis" - auflösen nach x
auflösen nach x < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

auflösen nach x: problem beim auflösen nach x
Status: (Frage) beantwortet Status 
Datum: 16:48 Mo 28.03.2005
Autor: komodor

Hallo Mathefans,

ich habe ein kleines Problem mit folgener aufgabe!

[mm] e^x [/mm] + e^(2x) - 2 = 0

mein lösungsweg:
ln [mm] (e^x) [/mm] + ln (e^(2x)) - ln 2 = 0

da ln [mm] e^x [/mm] = x ist und ln e^(2x) = 2x ist folgt daraus ja

<=> x + 2x - ln 2 = 0
<=> 3x = ln 2
<=>   x = (ln 2)/3

das sind ungefähr 0,23104906!

das problem ist, dass x = 0 sein muss, damit die aufgabe erfüllt ist! da [mm] e^0 [/mm] ja 1 ist
und 1 + 1 - 2 = 0 ist! setzt man jedoch mein ergebnis ein kommt da nur müll raus :(

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
auflösen nach x: Hinweis
Status: (Antwort) fertig Status 
Datum: 17:30 Mo 28.03.2005
Autor: MathePower

Hallo,

setze in der Gleichung

[mm]e^{2x} \; + \;e^x \; - \;2\; = \;0[/mm]

[mm]z\; = \;e^{x} [/mm]

Dann erhältst Du eine quadratische Gleichung:

[mm]z^{2} \; + \;z\; - \;2\; = \;0[/mm]

Aus dieser Gleichung werden die Lösungen bestimmt.
Dabei sind allerdings nur positive Lösungen für z zu betrachten.

Rücktransformation liefert die entsprechenden x- Werte.

Gruß
MathePower

Bezug
        
Bezug
auflösen nach x: Fehler!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:16 Mo 28.03.2005
Autor: Marcel

Hallo!

> Hallo Mathefans,
>  
> ich habe ein kleines Problem mit folgener aufgabe!
>  
> [mm]e^x[/mm] + e^(2x) - 2 = 0
>  
> mein lösungsweg:
>  ln [mm](e^x)[/mm] + ln (e^(2x)) - ln 2 = 0

Leider ist das nicht in Ordnung, da ja i.A.:
[mm] $\ln(a+b)\not=\ln(a)+\ln(b)$ [/mm] ist.

Schau dir bitte nochmal die MBLogarithmusgesetze an!

Viele Grüße,
Marcel

Bezug
        
Bezug
auflösen nach x: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:17 Mo 28.03.2005
Autor: komodor

vielen dank! auf die einfachste lösung komm ich irgendwie nie!

naja, ziemlich logisch!

Für alle die komplette rechnung nun:

[mm] e^x [/mm] + [mm] e^{2x} [/mm] - 2 = 0
setze [mm] e^x [/mm] = z
=> z + [mm] z^2 [/mm] - 2 = 0
nun quadratisch ergänzen
=>   [mm] (z+1/2)^2 [/mm] - 2 = 0
<=> [mm] (z+1/2)^2 [/mm] = 9/4
<=> z+1/2 = 3/2 v z+1/2 = -3/2
<=> z = 1 v z = -2
resubstituieren
=> [mm] e^x [/mm] = 1 v [mm] e^x [/mm] = -2
<=> ln [mm] e^x [/mm] = ln 1
da [mm] e^x [/mm] immer >0 ist [mm] e^x [/mm] = -2 unlösbar
<=> x = ln 1
<=> x = 0



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]