matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheoriebed. E-Wert / Unformung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Wahrscheinlichkeitstheorie" - bed. E-Wert / Unformung
bed. E-Wert / Unformung < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

bed. E-Wert / Unformung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:03 Sa 05.12.2009
Autor: Irmchen

Guten Morgen!

Ich beschäftige mich zur Zeit mit der Projektionseigenschaft für bedingte Erwartungswerte und hab bzgl. des Beweises Unklarheiten.

Projektionseigenschaft :

Für [mm] E ( \cdot \ | \ \mathcal F ) [/mm] gilt P. f.s. :

Sind [mm] \mathcal F_1 \subset \mathcal F_2 \subset A [/mm] [mm] \sigma [/mm] - Algebren , so gilt:

[mm] E(E(X \ | \ \mathcal F_2 ) \ | \ \mathcal F_1 ) = E(X \ | \ \mathcal F_1 ) [/mm]

Beweis :

Für [mm] T \in \mathcal F_1 [/mm] gilt:

[mm] \integral_T E(X \ | \ \mathcal F_1 ) dP = \integral_T X dP = \integral_T E(X \ | \ \mathcal F_2 ) dP = \integral_T E( E(X \ | \ \mathcal F_2) \ | \ \mathcal F_1 ) \ dP [/mm]

Also ist [mm] E( E(X \ | \ \mathcal F_2) \ | \ \mathcal F_1 ) [/mm] eine Version von  [mm] E(X \ | \ \mathcal F_1 ) [/mm].

Meine Frage ist nun die Folgende:

Ich weiß aus der folgenden definierenden Gleichung aus der Vorlesung:

[mm] \integral_T E(X \ | \ \mathcal F ) dP = \integral_T X dP \ \forall T \in \mathcal F [/mm]  

dass das erste Gleichheitszeichen gilt.
Jedoch ist mir unklar, warum das 2. & 3. Gleichheitszeichen gelten..
Gilt das 2. weil, wenn [mm] T \in \mathcal F_1 [/mm] ist, dann ist es aufgrund [mm] \mathcal F_1 \subset \mathcal F_2 \subset A [/mm] auch in [mm] \mathcal F_2 [/mm] ?
Und welche Begründung liegt für das letzte Gleichheitszeichen vor?

Vielen Dank schon mal!

Viele Grüße
Irmchen


        
Bezug
bed. E-Wert / Unformung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:09 Sa 12.12.2009
Autor: Turis

Hallo,

ich sitze grad selbst in WT 2 und mühe mich mit ähnlichen Problemen ab, daher ist meine Antwort mit Vorsicht zu genießen ;)

Spontan dachte ich auch erst, dass auf Grund der Inklusion das zweite = gilt, aber laut Def müsste es ja für ALLE T aus [mm] F_{2} [/mm] gelten und wenn [mm] F_{2} [/mm] größer ist als [mm] F_{1} [/mm] so könnte es doch T geben, für die das nicht gilt...

Ich finde den Beweis merwürdig. Ich geb dir mal an welchen wir in der Vorlesung gemacht haben:

Beh: [mm] F_{1} \subset F_{2} [/mm] dann gilt
[mm] E(E(X|F_{1})|F_{2}) [/mm] = [mm] E(X|F_{1}) [/mm] = [mm] E(E(X|F_{2})|F_{1}) [/mm]
"Die kleinere Sigma-Algebra setzt sich durch."

Wir hatten zuvor in der gleichen Proposition bewiesen das E(X|F)=X falls X F-messbar ist. Das brauchen wir nun:

1. Da nun [mm] F_{1} \subset F_{2} [/mm] ist und laut Def. bekannt ist dass der bedingte Erwartungswert [mm] E(X|F_{1}) [/mm] ja [mm] F_{1}-messbar [/mm] sein muss, muss [mm] E(X|F_{1}) [/mm] auch [mm] F_{2}-messbar [/mm] sein (wenns im kleinen messbar ist, dann überträgt sich das auch aufs große).
Also ist gezeigt dass [mm] E(E(X|F_{1})|F_{2}) [/mm] = [mm] E(X|F_{1}) [/mm]

2. Sei nun F [mm] \in F_{1} [/mm]
[mm] \integral_{F}^{}{E(E(X|F_{2})|F_{1})}dP [/mm]
laut Def der bed. Erwartung ist das
= [mm] \integral_{F}^{}{E(X|F_{2})}dP [/mm]
da F [mm] \in F_{1} [/mm] isses auch in [mm] F_{2} [/mm] und wir können wieder die Messbarkeits-Prop (s.o.) verwenden:
= [mm] \integral_{F}^{}{X}dP [/mm]
und wieder laut Def der bed. Erwartung (F ist ja aus [mm] F_{1}) [/mm]
= [mm] \integral_{F}^{}{E(X|F_{1})}dP [/mm]

Und damit haben wir auch die zweite Gleichheit aus der Behauptung.

Ich hoffe es hilft :)

Grüße



Bezug
                
Bezug
bed. E-Wert / Unformung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:42 Mo 14.12.2009
Autor: Irmchen

Vielen Dank!

Dein Beweis ist wirklich übersichtlicher!
Vielen Dank nochmal!

Viele Grüße
irmchen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]