matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheoriebedingte Erwartung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Wahrscheinlichkeitstheorie" - bedingte Erwartung
bedingte Erwartung < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

bedingte Erwartung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:12 Do 26.07.2012
Autor: physicus

Hallo zusammen

Ich kenne den Satz, wenn ich eine bedingte Erwartung der Form [mm] $E[F(X,Y)|\mathcal{G}]$ [/mm] habe, wobei $F$ eine messbare Funktion ist, $X$ unabhängig von [mm] $\mathcal{G}$ [/mm] und $Y$ [mm] $\mathcal{G}$ [/mm] messbar, dann gilt:

[mm] $$E[F(X,Y)|\mathcal{G}]= E[F(X,y)]|_{y=Y(\omega)}$$ [/mm]

Ich betrachte nun den Fall [mm] $F(x,y):=\mabf1_{x+y\in A}$ [/mm] wobei $A$ eine offene Menge in [mm] $\mathbb{R}$ [/mm] ist. Weiter sei [mm] $X=(W_{t+h}-W_t),Y=W_t$ [/mm] und [mm] $\mathcal{G}:=\sigma (W_s;s\le [/mm] t)$, wobei $W$ eine Brownsche Bewegung ist. Dann kann ich ja den Satz anwenden:

[mm] $$E[F(X,Y)|\mathcal{G}]= [/mm] const [mm] \int_A \exp{(-\frac{(x-W_t)^2}{2 h})} [/mm] dx $$

Meine Frage ist, wieso steht in der [mm] $\exp(x)$ [/mm] Funktion [mm] $x-W_t$ [/mm] und nicht [mm] $x+W_t$ [/mm] ? Meine Funktion $F$ ist ja auch definiert als [mm] $\mathbf1{x+y\in A}$ [/mm] Danke für die Hilfe

Liebe Grüsse

physicus


ps: [mm] $\mathbf1$ [/mm] ist die charakteristische Funktion.

        
Bezug
bedingte Erwartung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:10 Do 26.07.2012
Autor: Gonozal_IX

Hiho,

die exp-Funktion kommt doch durch die Verteilungsdichte von X zustande.
Hast du das mal ausgeschrieben?
Mach das mal :-)

MFG,
Gono.

Bezug
                
Bezug
bedingte Erwartung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:56 Fr 27.07.2012
Autor: physicus

Hallo Gonozal

Danke für deine schnelle Antwort. Ich glaube ich weiss jetzt, was du meinst! Das ist einfach Transformation für Zufallsvariablen. Wenn eine ZV $X$ eine Dichte $f(x)$ hat, dann hat $X+b$ die Dichte $f(x-b)$, richtig?


Gruss

phyiscus

Bezug
                        
Bezug
bedingte Erwartung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:06 Fr 27.07.2012
Autor: blascowitz

Hallo,

das ist korrekt.

Viele Grüße
Blasco

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]