bedingte W'keit und Maße < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 00:25 Mo 29.03.2010 | Autor: | Merli |
Hallo ihr,
ich habe mal wieder eine Frage zur bedingten Wahrscheinlichkeit. Wir haben in der Vorlesung bemerkt, dass die Abbildung [mm]A\mapsto \mathbb{P}(A|\mathcal{F})(\omega)[/mm] für [mm]A\in\mathcal A \ (\mathcal A \ \sigma-Algebra)[/mm] und [mm]\omega[/mm] fest i.A. kein Maß ist. Ich verstehe jedoch nicht, wieso dies so ist.
Ich kann ja [mm]A[/mm] als abzählbare disjunkte Vereinigung [mm]A=\bigcup A_j[/mm] darstellen und ich erhalte daraus [mm]\mathbb{P}(\bigcup A_j|\mathcal{F})=\sum\mathbb{P}(A_j|\mathcal F)[/mm]. Jedoch scheint dies nur fast sicher zu gelten, denn es gibt überabzählbare viele solcher Darstellungen für [mm]A[/mm] und daraus ergibt sich ein Nullmengenproblem. Ich weiß aber nun nicht ganz was mit dem Nullmengenproblem gemeint ist. Hängt das damit zusammen, dass die Vereinigung überabzählbar vieler Nullmengen i.A. keine Nullmenge mehr ist?
Viele Dank für eure Hilfe,
Merli
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 01:25 Mo 29.03.2010 | Autor: | Blech |
> Hallo ihr,
>
> ich habe mal wieder eine Frage zur bedingten
> Wahrscheinlichkeit. Wir haben in der Vorlesung bemerkt,
> dass die Abbildung [mm]A\mapsto \mathbb{P}(A|\mathcal{F})(\omega)[/mm]
> für [mm]A\in\mathcal A \ (\mathcal A \ \sigma-Algebra)[/mm] und
> [mm]\omega[/mm] fest i.A. kein Maß ist. Ich verstehe jedoch nicht,
> wieso dies so ist.
> Ich kann ja [mm]A[/mm] als abzählbare disjunkte Vereinigung
> [mm]A=\bigcup A_j[/mm] darstellen und ich erhalte daraus
> [mm]\mathbb{P}(\bigcup A_j|\mathcal{F})=\sum\mathbb{P}(A_j|\mathcal F)[/mm].
> Jedoch scheint dies nur fast sicher zu gelten, denn es gibt
> überabzählbare viele solcher Darstellungen für [mm]A[/mm] und
> daraus ergibt sich ein Nullmengenproblem. Ich weiß aber
> nun nicht ganz was mit dem Nullmengenproblem gemeint ist.
> Hängt das damit zusammen, dass die Vereinigung
> überabzählbar vieler Nullmengen i.A. keine Nullmenge mehr
> ist?
Ja
ciao
Stefan
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 22:36 Mo 29.03.2010 | Autor: | Merli |
Hallo Stefan,
danke für deine Antwort. Leider sehe ich trotz des Skriptes von der Uni Mainz immer noch nicht, wofür ich die Aussage: "Vereinigung
überabzählbar vieler Nullmengen ist i.A. keine Nullmenge mehr" benötige. Könntest du mir vielleicht erklären, wie diese Aussage in den Beweis mit eingeht?
Vielen Dank,
Merli
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:11 Di 30.03.2010 | Autor: | Blech |
Hi,
Also, für jedes [mm] $A\in\mathcal [/mm] A$ wählen wir eine Version der bedingten Wahrscheinlichkeit $P(A\ |\ [mm] \mathcal F)(\omega)$, $\omega\in\Omega$.
[/mm]
Damit haben wir jedem Tupel [mm] $(A,\omega)$ [/mm] eine Zahl $P(A\ |\ [mm] \mathcal F)(\omega)$ [/mm] zugewiesen. Jetzt schauen wir uns für ein festes [mm] $\omega$ [/mm] die [mm] $\sigma$-Additivität [/mm] von [mm] $P(\cdot\ [/mm] |\ [mm] \mathcal F)(\omega)$ [/mm] auf [mm] $\mathcal [/mm] A$ an:
[mm] $A_1,A_2,\ldots\in\mathcal [/mm] A$ seien disjunkte Mengen, dann gilt zwar
[mm] $P\left(\bigcup_{i=1}^\infty A_i\ |\ \mathcal F\right)(\omega) [/mm] = [mm] \sum_{i=1}^\infty P(A_i\ [/mm] |\ [mm] \mathcal F)(\omega)$
[/mm]
aber nur für fast alle [mm] $\omega$, [/mm] d.h. für alle [mm] $\omega$ [/mm] außerhalb einer Menge [mm] $N(A_1,A_2,\ldots)$, [/mm] die Wahrscheinlichkeit 0 hat. Damit ist aber die Menge, auf der [mm] $P(\cdot\ [/mm] |\ [mm] \mathcal F)(\omega)$ [/mm] nicht [mm] $\sigma$-additiv [/mm] ist:
[mm] $O=\bigcup\{N(A_1,A_2,\ldots);\ A_1,A_2,\ldots\in\mathcal A\ \text{disjunkt}\} [/mm] $
Das ist eine überabzählbare Vereinigung, und überabzählbare Vereinigungen von Nullmengen müssen keine Nullmengen sein.
D.h. Wir können bei der Wahl unserer bedingten Wahrscheinlichkeitsfunktion eine erwischen, die allen Anforderungen an eine bedingte Wahrscheinlichkeit genügt, aber bei der wir mit positiver Wahrscheinlichkeit ein [mm] $\omega$ [/mm] erwischen, für das für irgendeine Gruppe von Mengen die [mm] $\sigma$-Additivität [/mm] nicht gilt.
Beachte, daß für ein Wmaß die [mm] $\sigma$-Additivität [/mm] für alle disjunkten Mengen gelten muß. Nicht "fast sicher", nicht für "fast alle", sondern ein absolutes "gilt".
Den bedingten EW (und damit die bedingte Wkeit) stört es nicht, weil dort alles nur "f.s." ist, d.h. es interessiert ihn nur, daß für gewählte [mm] $A_1,A_2,\ldots$ [/mm] die [mm] $\sigma$-Additivität [/mm] f.s., d.h. für f.a. [mm] $\omega$ [/mm] gilt, nicht ob die Menge der [mm] $\omega$, [/mm] für die es irgendein Gegenbeispiel gibt, selbst eine Nullmenge ist.
Du solltest Dich aber nicht so daran aufhängen. Ich könnte Dir kein Gegenbeispiel nennen, ich hab noch nie eins gesehen und die Voraussetzungen, daß man eine reguläre bedingte Wahrscheinlichkeit finden kann, sind denkbar gering. Im Prinzip muß man O durch abzählbar viele N ausreichend gut "annähern" können. Es reicht also denk ich, daß man einen polnischen Raum hat, für reellwertige Zufallsvariablen gilt es sowieso. (zu dem könnte Dir der Link, den ich nicht komplett durchgelesen habe ^^, wahrscheinlich mehr sagen. Ich kann keine der Aussagen im letzten Absatz garantieren =)
ciao
Stefan
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:24 Mi 31.03.2010 | Autor: | Merli |
Hallo Stefan,
vielen Dank für deine Erklärung =)
Liebe Grüße,
Merli
|
|
|
|