matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheoriebedingter Erwartungswert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Wahrscheinlichkeitstheorie" - bedingter Erwartungswert
bedingter Erwartungswert < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

bedingter Erwartungswert: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 12:56 Sa 15.11.2008
Autor: AndyK

Aufgabe
Seien [mm]X_{1}[/mm] und [mm]X_{2}[/mm] unabhängige [mm]\pi_{\lambda}[/mm]-Verteilte (Poisson-Verteilt mit Parameter [mm]\lambda[/mm]) Zufallsvariablen, und sei [mm]Y = X_{1} + X_{2}[/mm]. Man berechne [mm]P(X_{1} = i|Y)[/mm].

Hallo zusammen, also ich weiß, dass ich [mm]P(X_{1} = i|Y)[/mm] mit hilfe der bedingen Wahrscheinlichkeit ausrechnen kann. Also mit [mm]E(1_{\{X_{1}= i\}}|Y)[/mm]. Was mir hier Kopfschmerzen bereitet ist, dass [mm]Y[/mm] als Summe von [mm]X_{1}[/mm] und [mm]X_{2}[/mm] gegeben ist.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
bedingter Erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 14:00 Sa 15.11.2008
Autor: luis52

Moin Andreas,

zunaechst ein [willkommenmr]

Es ist fuer [mm] $y=0,1,2,\dots$ [/mm]

[mm] $P(X_1=x\mid X_1+X_2=y)=\frac{P(X_1=x\cap X_1+X_2=y)}{P(X_1+X_2=y)}=\frac{P(X_1=x\cap x+X_2=y)}{P(X_1+X_2=y)}=\dots$ [/mm]

fuer [mm] $x=0,1,2,\dots,y$. [/mm]

Kobra, uebernehmen Sie ;-) Nutze aus, dass [mm] $Y=X_1+X_2$ [/mm] Poisson-verteilt ist mit
Parameter [mm] $2\lambda$. [/mm]

vg Luis


Bezug
                
Bezug
bedingter Erwartungswert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:26 Sa 15.11.2008
Autor: AndyK

Hallo Luis,
danke für deine Antwort!

Ich hab mir mal dazu ein paar gedanken gemacht:
Es ist ja so, dass in meiner Aufgabe das j (bei dir das y) nicht angegeben und das i (bei dir das x) fest ist. Also wird ja die Wahrscheinlichkeit davon abhängen, welchen Wert man für y verwendet. Aus meinem Skript und der Gleichung, die ich schon erwähnt hatte, hab ich mir dann mit deinem Hinweis folgendes überlegt:

[mm]P(X_1=i|Y) = E(1_{\{X_1=i\}}|Y) = \sum_{j=i}^{\infty}\frac{P(X_1=i,X_1+X_2=j)}{P(X_1+X_2=j)}1_{\{Y=j\}}=\sum_{j=i}^{\infty}\frac{P(X_1=i,X_2=j-i)}{P(X_1+X_2=j)}1_{\{Y=j\}}[/mm]

Da ja [mm]j \ge i[/mm] sein muss, habe ich den Startindex der Summe angepasst.
Wegen der Unabhängigkeit von [mm]X_1[/mm] und [mm]X_2[/mm] erhalte ich dann:

[mm]= \sum_{j=i}^{\infty}\frac{P(X_1=i)P(X_2=j-i)}{P(X_1+X_2=j)}1_{\{Y=j\}}[/mm]

Wenn ich nun verwende, dass [mm] $X_1$, $X_2\ \pi_\lambda$ [/mm] und [mm] $X_1+X_2\ \pi_{2\lambda}$-verteilt [/mm] sind, erhalte ich:

[mm] $=\sum_{j=i}^{\infty}\frac{e^{2\lambda}j!}{(2\lambda)^j}\cdot\frac{\lambda^i}{e^{\lambda}i!}\cdot\frac{\lambda^{j-i}}{e^{\lambda}(j-i)!}\cdot 1_{\{Y=j\}} [/mm] = [mm] \sum_{j=i}^{\infty}\frac{1}{2^j} [/mm] {j [mm] \choose [/mm] i} [mm] 1_{\{Y=j\}}$ [/mm]

Auftrag erfüllt? ;-)

Bezug
                        
Bezug
bedingter Erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 16:58 Sa 15.11.2008
Autor: luis52

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo Andreas,

leider ist mir deine Notation fremd.  Ich interpretiere $1_{\{Y=j\}$ als
eine Indikatorvariable, deren konkrete Werte in der Form $  1_{\{Y=j\}} (\mbox{irgendwas)$ geschrieben werden. Insbesondere ist mir nicht klar,
wie die Reihe

$\sum_{j=i}^{\infty}\frac{1}{2^j} {j \choose i} 1_{\{Y=j\}} $

berechnet werden soll.

Ich beziehe mich auf die m.W. gaengigere Defintion der bedingten
Wsk-Funktion, wie sie beispielsweise []hier, Seite 21
zu finden ist. Sie bezieht sich auf [mm] $x,y\in\IR$, [/mm] und du kannst sie
begreifen als eine Funktion von $x$, sagen wir $g(x)$. Ersetzt du x durch
X, so erhaeltst du die Zufallsvariable $g(X)$. Ich denke, dass Analoges
in deiner Aufgabenstellung gemeint ist.

Deine Stratige sollte also sein:

1) Gib dir [mm] $i,j\in\IR$ [/mm] vor.
2) Bestimme [mm] $P(X_1=i\mid [/mm] Y=j)$
3) Begreife das Ergebnis aus 2) als eine Funktion von j, sagen wir $g(j)$
4) Die Zufallsvariable $g(Y)$ ist das gesuchte Ergebnis

Leider habe ich die Berechnung von   [mm] $P(X_1=i\mid [/mm] Y=j)$ mit deiner
Erwartungswertformel nicht parat (wenngleich ich vermute, dass du damit
auch nicht allzu sattelfest bist). Ich fuerchte, einen anderen
Loesungsweg als den hier aufgezeigten, kann ich dir nicht bieten ...


vg Luis          

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]