matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Stochastikbedingter Erwartungswert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - bedingter Erwartungswert
bedingter Erwartungswert < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

bedingter Erwartungswert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:25 Sa 31.10.2009
Autor: Mathec

Aufgabe
Gegeben seien 2 Zufallsvariablen X,Y mit gemeinsamer Dichte
[mm] f_{X,Y}(x,y)=15x^2y1_{0 \le x \le y \le 1}. [/mm]
Bestimme E(Y|X)!

Hallo Leute!
Ich hänge an obiger Aufgabe, da ich nicht weiss, wie die Integrationsgrenzen zu setzen sind. Die Vorgehensweise ist schon klar: Randdichte von [mm] f_{X}(x) [/mm] berechnen und dann [mm] f(y|x):=f_{X,Y}(x,y) [/mm] / [mm] f_{X}(x) [/mm] berechnen... Schon bei der Randdichte [mm] f_{X}(x) =\integral_{-\infty}^{\infty}{f_{X,Y}(x,y) dy} [/mm] weiss ich nicht, ob ich von 0 bis 1 oder  von x bis 1 integrieren soll????Genauso dann später, wenn ich den bedingten E-Wert berechnen soll :-(
Ich hoffe, ihr habt nen Tipp für mich!! Bin für jede Hilfe dankbar!!
Mathec

        
Bezug
bedingter Erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 18:42 Sa 31.10.2009
Autor: luis52


>  Ich hänge an obiger Aufgabe, da ich nicht weiss, wie die
> Integrationsgrenzen zu setzen sind. Die Vorgehensweise ist
> schon klar: Randdichte von [mm]f_{X}(x)[/mm] berechnen und dann
> [mm]f(y|x):=f_{X,Y}(x,y)[/mm] / [mm]f_{X}(x)[/mm] berechnen... Schon bei der
> Randdichte [mm]f_{X}(x) =\integral_{-\infty}^{\infty}{f_{X,Y}(x,y) dy}[/mm]
> weiss ich nicht, ob ich von 0 bis 1 oder  von x bis 1
> integrieren soll????

Moin Mathec,

mach dir mal eine Skizze der Menge [mm] $\{(x,y)\mid 0\le x\le y\le 1\}$. [/mm]
Gib dir dann $x_$ vor. Wo liegt der Bereich, ueber den integriert wird?

> Genauso dann später, wenn ich den
> bedingten E-Wert berechnen soll :-(

Wo liegt dann das Problem? Wenn du [mm] $f_X$ [/mm] hast, hast du auch [mm] $f(y\mid [/mm] x)$
und dann [mm] $\operatorname{E}[Y\mid X=x]=\int [/mm] y [mm] f(y\mid x)\,dy$ [/mm] und folglich [mm] $\operatorname{E}[Y\mid [/mm] X]$.

vg Luis


Bezug
                
Bezug
bedingter Erwartungswert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:58 Sa 31.10.2009
Autor: Mathec

Hallo Luis!
Also, wenn ich mir die Menge aufzeichne, habe ich die Winkelhalbierende zwschen der x- und y-Achse und der Bereich, der unter der Winkelhalbierenden liegt, ist der zulässige. Wobei natürlich y nur bis höchstens 1 gehen darf...also müsste es bedeuten, dass ich als Grenzen x und 1 nehmen muss,oder?Also muss ich auch diese Grenzen wieder nehmen, wenn ich den bed. E-Wert berechnen will?
VG und Danke!!!

Bezug
                        
Bezug
bedingter Erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 19:30 Sa 31.10.2009
Autor: luis52


> Hallo Luis!
>  Also, wenn ich mir die Menge aufzeichne, habe ich die
> Winkelhalbierende zwschen der x- und y-Achse und der
> Bereich, der unter der Winkelhalbierenden liegt, ist der
> zulässige. Wobei natürlich y nur bis höchstens 1 gehen
> darf...also müsste es bedeuten, dass ich als Grenzen x und
> 1 nehmen muss,oder?

[ok]

> Also muss ich auch diese Grenzen wieder
> nehmen, wenn ich den bed. E-Wert berechnen will?
>  VG und Danke!!!  

Schaun mer mal.

vg Luis


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]