matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Reihenberechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - berechnung
berechnung < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

berechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:24 Mi 24.11.2010
Autor: Kugelrund

Hallo ihr Lieben,

ich übe gerade und stecke ein wenig fest wir haben in der Vorlesung bewiesen das eine Folge konvergiert und dann auch den Grenzwert bestimmt, der letzte Schritt von dem Beweis lautet so

[mm] \bruch{1}{2}\ ({x+\bruch{a}{x}}) [/mm] und dann haben wir daraus berechnet
[mm] x^{2}=a \Rightarrow x=\wurzel{a} [/mm]

wie wurde da gerechnet ich weiss nicht wie die auf die [mm] x^{2}=a [/mm] gekommen sind...

Danke schon mal für euchre hilfe

        
Bezug
berechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:29 Mi 24.11.2010
Autor: abakus


> Hallo ihr Lieben,
>  
> ich übe gerade und stecke ein wenig fest wir haben in der
> Vorlesung bewiesen das eine Folge konvergiert und dann auch
> den Grenzwert bestimmt, der letzte Schritt von dem Beweis
> lautet so
>
> [mm]\bruch{1}{2}\ ({x+\bruch{a}{x}})[/mm] und dann haben wir daraus
> berechnet
> [mm]x^{2}=a \Rightarrow x=\wurzel{a}[/mm]

Junge! Sprich mal in einem zusammenhängenden Satz!
Du wirfst einen zusammenhanglosen Term ([mm]\bruch{1}{2}\ ({x+\bruch{a}{x}})[/mm]) in die Runde, und im nächsten Atemzug wird daraus eine Gleichung. Wenn du Hilfe brauchst, musst du wenigstens die Aufgabenstellung verständlich aufschreiben.
Gruß Abakus

>  
> wie wurde da gerechnet ich weiss nicht wie die auf die
> [mm]x^{2}=a[/mm] gekommen sind...
>  
> Danke schon mal für euchre hilfe  


Bezug
        
Bezug
berechnung: erste Schritte
Status: (Antwort) fertig Status 
Datum: 20:50 Do 25.11.2010
Autor: Loddar

Hallo Kugelrund!


Ich schau mal in meine Glaskugel und sehr dort ... die zu lösende Gleichung soll wohl heißen:

[mm]\red{x} \ = \ \bruch{1}{2}*\left(x+\bruch{a}{x}\right)[/mm]

Mltipliziere zunächst mit [mm]2_[/mm] , subtrahiere dann [mm]x_[/mm] . Anschließend die Gleichung mit [mm]x_[/mm] multiplizieren.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]