matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisbeschränkt,sup, inf, max, min
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Funktionalanalysis" - beschränkt,sup, inf, max, min
beschränkt,sup, inf, max, min < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

beschränkt,sup, inf, max, min: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:55 Mo 05.08.2019
Autor: bondi

Aufgabe
Ist [mm] f: ] -1,1 [ \to \IR, f(x)= x^2 [/mm] beschränkt?

Bestimme (falls existent) [mm] sup f(x), inf f(x), max f(x), min f(x) [/mm]


Hallo, hab mir die []Funktion mit symbolab angeschaut. Supremum und Infimum müssen nicht Bestandteil der Menge sein. Minimum und Maximum hingegen schon.

Liege ich richtig, dass [mm] sup f(x)=0 [/mm] und [mm] inf f(x)=1 [/mm] ist. [mm] min f(x) [/mm] und [mm] max f(x) [/mm] nicht existieren, da -1 und 1 nicht zur Menge gehören?

Bei 'beschränkt'/'nicht beschränkt' wär ich für einen Tipp dankbar.




        
Bezug
beschränkt,sup, inf, max, min: Antwort
Status: (Antwort) fertig Status 
Datum: 17:41 Mo 05.08.2019
Autor: hase-hh

Moin!

Also Beschränkheit meint, dass es eine obere bzw. eine untere Schranke gibt.

1. Falls  D = [mm] \IR [/mm]  

Es gibt untere Schranken und sogar eine größte untere Schranke  inf(f(x)) = 0,
aber keine obere Schranken, also auch keine kleinste obere Schranke  sup(f(x)).

D.h. hier wäre f(x)  nach unten beschränkt (nach oben unbeschränkt).


2. Falls  D = ] -1; 1 [  
--- Wenn ich es richtig verstanden habe ist dir dieses Intervall vorgegeben.  

Dann gibt es sowohl untere Schranken, auch eine größte untere Schranke inf(f(x)) = 0   => f(x)  ist nach unten beschränkt,

als auch obere Schranken, die kleinste ober Schranke sup(f(x)) = 1  =>  f(x) ist nach oben beschränkt.


In diesem Fall gibt es ein Minimum min(f(x) ) = 0  aber m.E. kein(eindeutiges) Maximum.





Bezug
        
Bezug
beschränkt,sup, inf, max, min: Antwort
Status: (Antwort) fertig Status 
Datum: 19:19 Mo 05.08.2019
Autor: tobit09

Hallo bondi,


ergänzend zur vorhandenen Antwort:


Es heißt in der Aufgabenstellung sicherlich z.B. [mm] $\sup_{x\in]-1,1[}f(x)$. [/mm]

Das ist eine Schreibweise für [mm] $\sup\;\{f(x)\;|\;x\in]-1,1[\}$. [/mm]

Es empfiehlt sich hier, zunächst [mm] $\{f(x)\;|\;x\in]-1,1[\}$ [/mm] zu bestimmen (das sogenannte Bild von f).

Es gilt [mm] $\{f(x)\;|\;x\in]-1,1[\}=[0,1[$. [/mm]


Zur Beschränktheit empfehle ich dir, zunächst eure Definition der Beschränktheit einer Funktion nachzuschlagen.

Wenn du nähere Infos benötigst, solltest du diese Definition hier posten, damit man passend zu eurer Definition antworten kann.


Viele Grüße
Tobias

Bezug
                
Bezug
beschränkt,sup, inf, max, min: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:34 Sa 10.08.2019
Autor: bondi

Hi, hier die Definitionen:

[mm] D \subseteq \IR [/mm] heißt offen, falls [mm] \forall x \in D \quad \exists \thinspace \epsilon > 0 [/mm] mit [mm] ] \thinspace x-\epsilon, x+\epsilon \thinspace [ \thinspace \in D [/mm]

[mm] D \subseteq \IR [/mm] heißt abgeschlossen, falls [mm] \IR \thinspace \backslash \thinspace F [/mm] offen ist.

[mm] D \subseteq \IR [/mm] heißt beschränkt, falls [mm] \exists \thinspace \M > 0 [/mm], mit [mm] \vert \thinspace x \thinspace \vert \leq M, \thinspace \forall \thinspace x \thinspace \in \thinspace D [/mm]

[mm] D \subseteq \IR [/mm] heißt kompakt, falls D abgeschlossen und beschränkt.

Bezug
                        
Bezug
beschränkt,sup, inf, max, min: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:42 Sa 10.08.2019
Autor: fred97


> Hi, hier die Definitionen:
>  
> [mm]D \subseteq \IR[/mm] heißt offen, falls [mm]\forall x \in D \quad \exists \thinspace \epsilon > 0[/mm]
> mit [mm]] \thinspace x-\epsilon, x+\epsilon \thinspace [ \thinspace \in D[/mm]

Das ist  OK

>  
> [mm]D \subseteq \IR[/mm] heißt abgeschlossen, falls [mm]\IR \thinspace \backslash \thinspace F[/mm]
> offen ist.

Du meinst  sicher [mm] \IR \setminus [/mm] D


>  
> [mm]D \subseteq \IR[/mm] heißt beschränkt, falls [mm]\exists \thinspace \M > 0 [/mm],


.........   [mm] \exists [/mm] M > 0....


> mit [mm]\vert \thinspace x \thinspace \vert \leq M, \thinspace \forall \thinspace x \thinspace \in \thinspace D[/mm]
>  
> [mm]D \subseteq \IR[/mm] heißt kompakt, falls D abgeschlossen und
> beschränkt.

So ist es.

Bezug
                        
Bezug
beschränkt,sup, inf, max, min: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:39 So 11.08.2019
Autor: tobit09

Hallo bondi,


> [mm]D \subseteq \IR[/mm] heißt beschränkt, falls [mm]\exists \thinspace M > 0 [/mm],
> mit [mm]\vert \thinspace x \thinspace \vert \leq M, \thinspace \forall \thinspace x \thinspace \in \thinspace D[/mm]

Das ist die Definition, wann eine TEILMENGE [mm] $D\subseteq\IR$ [/mm] beschränkt heißt.
Für die vorliegende Aufgabe benötigen wir aber eure Definition, wann eine FUNKTION [mm] $f\colon D\to\IR$ [/mm] beschränkt heißt.


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]