matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Reihenbeschränkte Folge mit H.Punkt
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - beschränkte Folge mit H.Punkt
beschränkte Folge mit H.Punkt < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

beschränkte Folge mit H.Punkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:33 Sa 17.05.2008
Autor: Karl_Pech

Hallo Zusammen,


Aufgabe
Eine Folge reeller Zahlen konvergiert genau dann, wenn sie beschränkt ist und genau einen Häufungspunkt besitzt.


Hier hätte ich eine Frage zur Richtigkeit der Rückrichtung meines Beweises der Aussage, da mit meinem Ansatz etwas nicht stimmen kann, weil ich dort nicht verwende, daß die Folge beschränkt ist:


Ein Häufungspunkt ist der Grenzwert einer Teilfolge der Folge [mm]\left(a_n\right)[/mm]. Da es nur einen Häufungspunkt von [mm]\left(a_n\right)[/mm] gibt, müssen also alle Teilfolgen von [mm]\left(a_n\right)[/mm] dagegen konvergieren. Da [mm]\left(a_n\right)[/mm] auch Teilfolge von sich selbst ist, konvergiert also auch [mm]\left(a_n\right)[/mm] gegen diesen Häufungspunkt als Grenzwert.


Oder ist der Beweis so richtig?


Danke für die Hilfe!



Grüße
Karl




        
Bezug
beschränkte Folge mit H.Punkt: Antwort
Status: (Antwort) fertig Status 
Datum: 15:47 Sa 17.05.2008
Autor: rainerS

Hallo!

> Hallo Zusammen,
>  
>
> Eine Folge reeller Zahlen konvergiert genau dann, wenn sie
> beschränkt ist und genau einen Häufungspunkt besitzt.
>  
> Hier hätte ich eine Frage zur Richtigkeit der Rückrichtung
> meines Beweises der Aussage, da mit meinem Ansatz etwas
> nicht stimmen kann, weil ich dort nicht verwende, daß die
> Folge beschränkt ist:
>  
>
> Ein Häufungspunkt ist der Grenzwert einer Teilfolge der
> Folge [mm]\left(a_n\right)[/mm]. Da es nur einen Häufungspunkt von
> [mm]\left(a_n\right)[/mm] gibt, müssen also alle Teilfolgen von
> [mm]\left(a_n\right)[/mm] dagegen konvergieren. Da [mm]\left(a_n\right)[/mm]
> auch Teilfolge von sich selbst ist, konvergiert also auch
> [mm]\left(a_n\right)[/mm] gegen diesen Häufungspunkt als Grenzwert.
>  
>
> Oder ist der Beweis so richtig?

Fast. Du brauchst die Beschränkheit, um aus der Eindeutigkeit des Häufungspunktes zu folgern, dass alle Teilfolgen konvergieren. Zum Beispiel: betrachte die Folge

[mm] a_n = \begin{cases} 1, & \text{$n$ gerade} \\ n, &\text{$n$ ungerade} \end{cases} [/mm].

Diese Folge hat 1 als einzigen Häufungspunkt, ist aber nicht konvergent: es gibt ja eine konvergente und eine divergente Teilfolge. [mm] ($\infty$ [/mm] ist kein Häufungspunkt, denn das ist keine reelle Zahl.)

Viele Grüße
  Rainer

Bezug
                
Bezug
beschränkte Folge mit H.Punkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:46 Sa 17.05.2008
Autor: Karl_Pech

Hallo Rainer,


Ich versuche gerade meinen Beweis zu retten. ;-) Kann man den Satz von Bolzano-Weierstraß eventuell etwas verschärfen oder ist das Folgende der Satz von Bolzano-Weierstraß ?:


Version 1:

Jede beschränkte Folge reeller Zahlen besitzt eine konvergente Teilfolge.


Version 2:


Jede beschränkte Folge reeller Zahlen läßt sich vollständig in konvergente Teilfolgen zerlegen.


Ich denke auch Version 2 ist richtig. Muß man Version 2 beweisen und wenn ja, wie soll man da argumentieren?


Mit Version 2 kann ich meinen Beweis retten:


Ein Häufungspunkt ist der Grenzwert einer Teilfolge der Folge [mm]\left(a_n\right)[/mm]. Da [mm]\left(a_n\right)[/mm] beschränkt ist, kann man [mm]\left(a_n\right)[/mm] vollständig in konvergente Teilfolgen zerlegen. Da es nur einen Häufungspunkt von [mm]\left(a_n\right)[/mm] gibt, müssen also alle Teilfolgen von [mm]\left(a_n\right)[/mm] dagegen konvergieren. Also konvergiert auch [mm]\left(a_n\right)[/mm] gegen diesen Häufungspunkt als Grenzwert.

Bezug
                        
Bezug
beschränkte Folge mit H.Punkt: Antwort
Status: (Antwort) fertig Status 
Datum: 18:09 Sa 17.05.2008
Autor: pelzig


> Jede beschränkte Folge reeller Zahlen läßt sich vollständig
> in konvergente Teilfolgen zerlegen.  
>
> Ich denke auch Version 2 ist richtig. Muß man Version 2
> beweisen und wenn ja, wie soll man da argumentieren?

Ich denke man könnte das ähnlich wie den Satz von Bolzano-Weierstraß beweisen (Überaschung ^^). Ich will nur mal die Idee skizzieren:
[mm] $a_n$ [/mm] ist beschränkt, d.h. es gibt [mm] $C\in\IR$ [/mm] mit [mm] $a_n\subset[-C,C]:=I$. [/mm] Jetzt teilst du das Intervall $I$ in der Mitte in $I'$ und $I''$. Es gibt zwei Fälle:

1. In einem der Intervalle $I'$, $I''$ liegen nur endlich viele Folgeglieder, z.B. in $I'$. Dann schmeißt du alle diese endlich vielen Folgeglieder in eine Folge und machst dann mit der Halbierung von $I''$ weiter.

2. In beiden Intervallen liegen [mm] $\infty$-viele [/mm] Folgenglieder. Dann machst du einfach weiter mit der Halbierung von $I'$ und wendest außerdem den selben Algorithmus für eine neue Teilfolge auf $I''$ an.

Das technisch sauber auszuführen scheint mir aber ziemlich anstrengend zu sein, und ich glaube der Aufwand damit deinen Beweis zu "retten"  ist viel größer als eine alernative Herangehensweise zu wählen:

Sei [mm] $a_n$ [/mm] beschränkt mit dem einzigen Häufungspunkt $a$. Nach dem Satz von Bolzano Weierstraß gibt es [mm] $a_{n_k}\to [/mm] a$. Wir zeigen nun dass auch [mm]a_n\to a[/mm]. Annahme: das ist falsch, d.h. es gibt ein [mm] $\varepsilon_0>0$ [/mm] und zu jedem [mm] $n\in\IN$ [/mm] ein [mm]m>n[/mm] mit [mm] $|a_m-a|>\varepsilon_0$. [/mm] Betrachte nun [mm] $f(n):=\min_{m>n}|a_m-a|>\varepsilon_0$. [/mm] Dies ist wohldefiniert und monoton wachsend, gibt uns also eine Teilfolge [mm] $b_n:=a_{f(n)}$, [/mm] für die gilt: [mm] $\forall n\in\IN:|b_n-a|>\varepsilon_0$ $(\star)$. [/mm] Offensichtlich ist auch [mm] $b_n$ [/mm] beschränkt und es gibt nach Bolzano-Weierstraß [mm] $b_{n_k}\rightarrow [/mm] a$ - Widerspruch zu [mm] $(\star)$, [/mm] q.e.d.

Bezug
                                
Bezug
beschränkte Folge mit H.Punkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:24 Sa 17.05.2008
Autor: Karl_Pech

Hallo pelzig,


Danke für die Antwort! :)



Grüße
Karl




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]