matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationbeweis durch mittelwertsatz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differentiation" - beweis durch mittelwertsatz
beweis durch mittelwertsatz < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

beweis durch mittelwertsatz: Ansatz richtig?
Status: (Frage) beantwortet Status 
Datum: 12:29 Fr 30.01.2009
Autor: Zwetschke123

Aufgabe
Benutzen die den Mittelwertsatz der Differentialrechnung für das Intervall [0,x] um zu zeigen, dass

[mm] x\le e^{x}-1 \le [/mm] x [mm] e^{x} [/mm]

gilt.

Hallo zusammen

von den beweisen mit mittelwertsatz haben wir zwar schon ein paar gerechnet, aber ich hab das prizip noch nich so ganz verstanden und hoffe, dass ihr mir da helfen könnt.

Mittelwertsatz is ja:   [mm] \bruch{f(b)-f(a)}{b-a}=f'(\xi) [/mm]

Mein ansatz is dann

[mm] \bruch{e^{b}-1-e^{a}-1}{b-a}=a^\xi [/mm]

mit a=0 und b=x dann

[mm] \bruch{e^x-2-e^0}{x-0}=e^\xi [/mm]

[mm] \gdw \bruch{e^x -3}{x}=e^\xi [/mm]


is das soweit richtig, oder muss es [mm] \bruch{e^{b}-1}{b-a}=a^\xi [/mm] , oder was ganz anderes sein?

        
Bezug
beweis durch mittelwertsatz: Rechenfehler
Status: (Antwort) fertig Status 
Datum: 12:33 Fr 30.01.2009
Autor: Roadrunner

Hallo Zwetschke!


Du hast leider Klammern unterschlagen. Es muss heißen:

[mm] $$e^{\xi} [/mm] \ = \ [mm] \bruch{\red{\left(}e^b-1\red{\right)}-\red{\left(}e^a-1\red{\right)}}{b-a} [/mm] \ = \ [mm] \bruch{e^b-1-e^a \ \red{+} \ 1}{b-a} [/mm] \ = \  [mm] \bruch{e^b-e^a}{b-a}$$ [/mm]

Gruß vom
Roadrunner


Bezug
                
Bezug
beweis durch mittelwertsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:06 Fr 30.01.2009
Autor: Zwetschke123

wow, das ging schnell

hast recht, die klammern hatte ich vergessen

damit komm ich dann auf

[mm] \bruch{e^x -1}{x}=e^\xi [/mm]

[mm] 0\le \xi \le [/mm] x

[mm] e^0 \le e^\xi \le e^x [/mm]  darf ich doch machen, weil e ne monoton steigende funktion is, oder?

[mm] e^0 \le \bruch{e^x - 1}{x} \le e^x [/mm]          |*x             Geht das so ohne weiteres bei den [mm] \le [/mm] ?

[mm] e^0 \le e^x [/mm] - 1 [mm] \le xe^x [/mm]

müsste so passen, oder?

Bezug
                        
Bezug
beweis durch mittelwertsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 13:23 Fr 30.01.2009
Autor: M.Rex


> wow, das ging schnell
>  
> hast recht, die klammern hatte ich vergessen
>  
> damit komm ich dann auf
>  
> [mm]\bruch{e^x -1}{x}=e^\xi[/mm]
>  
> [mm]0\le \xi \le[/mm] x
>  
> [mm]e^0 \le e^\xi \le e^x[/mm]  darf ich doch machen, weil e ne
> monoton steigende funktion is, oder?

darfst du

>  
> [mm]e^0 \le \bruch{e^x - 1}{x} \le e^x[/mm]          |*x            
> Geht das so ohne weiteres bei den [mm]\le[/mm] ?

Auch das ist okay

Aber:

[mm] e^0 \le \bruch{e^{x} - 1}{x} \le e^x [/mm] mit x Multipliziert ergibt:
[mm] e^{0}*\red{x}\le e^{x}-1 \le e^{x}*x [/mm]

>  
> [mm]e^0 \le e^x[/mm] - 1 [mm]\le xe^x[/mm]
>  
> müsste so passen, oder?

Marius

Bezug
                                
Bezug
beweis durch mittelwertsatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:32 Fr 30.01.2009
Autor: Zwetschke123

hab ich auch so gemacht, nur leider falsch abgetippt.

Danke für eure schnelle Hilfe!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]