matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Induktionbeweis einer ungleichung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Induktion" - beweis einer ungleichung
beweis einer ungleichung < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

beweis einer ungleichung: tipp
Status: (Frage) beantwortet Status 
Datum: 12:37 Mo 11.10.2010
Autor: Hejo

Aufgabe
Beweisen sie die Aussage [mm] 2^n\ge 2n^2 [/mm] für alle n [mm] \in \IN [/mm] , n [mm] \ge n_{0} [/mm] für das kleinstmögliche [mm] n_{0} \in \IN [/mm]

Hi!

Also für n=1 gilt die Gleichung  und dann erst wieder für n= 7


Muss ich da eine INduktion von n=7 beginnend machen aber dann würde darin n=1 nich vorkommen und ich könnte das = in [mm] \ge [/mm] auch weglassen.

habt ihr einepn Tipp für mich?

grüße

        
Bezug
beweis einer ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:53 Mo 11.10.2010
Autor: reverend

Hej Hejo,

Du hast schon Recht: Induktion geht erst ab n=7 und das ist auch die Lösung der Aufgabe, so wie sie gestellt ist. n=1 solltest Du als Sonderfall erwähnen.

Das Gleichheitszeichen in der Aufgabe solltest Du aber nicht streichen - obwohl der Sonderfall n=1 dann ja wegfiele. In eine gute Aufgabenstellung gehört die Gleichheit also nicht hinein, aber da sie nun mal dasteht...

Grüße
reverend


Bezug
                
Bezug
beweis einer ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:05 Mo 11.10.2010
Autor: Hejo

Danke,

den Fall n= 1 kann ja zeigen indem ich 1 in die Gleichung einfach einsetze, aber was ist mit den Fällen 2 bis 6? muss ich das irgendwie zeigen, dass es für diese nicht gilt und ich dwshalb bei 7 beginne?

grüße


Bezug
                        
Bezug
beweis einer ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:07 Mo 11.10.2010
Autor: fred97


> Danke,
>  
> den Fall n= 1 kann ja zeigen indem ich 1 in die Gleichung
> einfach einsetze, aber was ist mit den Fällen 2 bis 6?
> muss ich das irgendwie zeigen, dass es für diese nicht
> gilt und ich dwshalb bei 7 beginne?

Ja, oben heißt es doch:

            "..............................für das kleinstmögliche $ [mm] n_{0} \in \IN [/mm] $"

FRED

>  
> grüße
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]