matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebrabildung einer Basis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - bildung einer Basis
bildung einer Basis < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

bildung einer Basis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:00 Di 13.06.2006
Autor: melek

Aufgabe
Zeigen Sie, dass die Linearformen  [mm] \delta_{1}, \delta_{2}, \delta_{3}: [/mm]
[mm] \IR^{3} \to \IR [/mm] mit [mm] \delta_{1} [/mm] (x,y,z)= x+2y+z, [mm] \delta_{2} [/mm] (x,y,z)=2x+3y+3z, [mm] \delta_{3} [/mm] (x,y,z)=3x+7y+z eine Basis von [mm] (\IR^{3})^{ \*} [/mm] bilden und berechnen Sie die dazu duale Basis in [mm] \IR^{3}. [/mm]

Hallo, nun bin ich an dieser Aufgabe und habe auch eine Idee, wie man rangehen kann, wollte aber erst wissen, ob es so richtig ist.
und zwar wollte ich fragen, ob ich die  [mm] \delta_{i}, [/mm] also die drei Vektoren nehme und zeigen soll, dass sie linear unabhängig sind??? und was ist
[mm] (\IR^{3})^{ \*} [/mm] ? und die duale Basis??

Wäre nett, wenn mir jemand weiterhilft..ich danke

        
Bezug
bildung einer Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 17:19 Mi 14.06.2006
Autor: Hanno

Hallo.

Der Raum [mm] $(\IR^3)^{\ast}$ [/mm] ist der Dualraum von [mm] $\IR^3$, [/mm] der Raum der linearen Abbidungen von [mm] $\IR^3$ [/mm] in [mm] $\IR$. [/mm]

Um zu zeigen, dass [mm] $\delta_1,\delta_2,\delta_3$ [/mm] linear unabhängig sind, musst du wie üblich annehmen, dass es [mm] $\lambda_1,\lambda_2,\lambda_3\in \IR$ [/mm] mit [mm] $\lambda_1\delta_1+\lambda_2\delta_2+\lambda_3\delta_3=0$ [/mm] gibt. Dies ist genau dann der Fall, wenn [mm] $(\lambda_1\delta_1+\lambda_2\delta_2+\lambda_3\delta_3)(x)=0$, [/mm] also [mm] $x_1(\lambda_1+2\lambda_2+3\lambda_3)+x_2(2\lambda_1+3\lambda_2+7\lambda_3)+x_3(\lambda_1+3\lambda_2+\lambda_3)=0$ [/mm] für alle [mm] $x=(x_1,x_2,x_3)\in\IR^3$ [/mm] gilt. Setzt du nun $x=(1,0,0), (0,1,0), (0,0,1)$, erhältst du drei Gleichungen. Untersuche, ob diese für [mm] $\lambda_1,\lambda_2,\lambda_3\neq [/mm] 0$ lösbar sind. Erinnere dich: um zu zeigen, dass Vektoren linear unabhängig sind, musst du zeigen, dass die einzige Linearkombination des Nullvektors die triviale ist.
Aus der linearen Unabhängigkeit folgt dann sofort die Basiseigenschaft, da [mm] $(\IR^3)^{\ast}$ [/mm] die Dimension 3 hat (warum?).

Liebe Grüße,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]