matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10biquadratische gleichungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Mathe Klassen 8-10" - biquadratische gleichungen
biquadratische gleichungen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

biquadratische gleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:48 Di 29.04.2008
Autor: zitrone

hallo,


ich habe heute zum ersten mal etwas von biquadratische gleichungen gehört.nun hab ich auch ein paar aufgaben dazu bekommen, scheitere aber schon an der ausklammerung. könnte mir bitte jemand sagen, ob ich richtig ausgeklammert habe und mir sagen wo der fehler liegt?

1(x²-14)²=5(6x²-49)
[mm] 1.x^{4}-28x²+196=30x²-245 [/mm]

2(x²+25)²=111x²-275
[mm] 2.x^{4}+50x²+625=111x²-275 [/mm]

3(6x²-11)(6x²+11)=5(101x²-181)
[mm] 3.36x^{4}+66x²-66x²-121=505x²-905 [/mm]

4(2x²-11)²-6=29(x²-1)
[mm] 4x^{4}-44x²+121-6=29x²-29 [/mm]

5(x²+2)²+3(2x+1)= (3x+1)²
[mm] x^{4}+4x²+4+6x+3=9x²+6x+1 [/mm]

6(3x²-4)²=(2x-1)²+4(x+3)
[mm] 9x^{4}-24x²+16=4x²-4x+1+4x+12 [/mm]


gruß zitrone




        
Bezug
biquadratische gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:59 Di 29.04.2008
Autor: HermineGranger

Also, ich habe es mir mal eben angeschaut und es sieht soweit Richtig aus.
Wie würdest du denn jetzt weiter rechnen??

MfG
HermineGranger

Bezug
                
Bezug
biquadratische gleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:02 Di 29.04.2008
Autor: zitrone

hallo,

danke^^.

ja, eigentlich schon. ich rechne mal eine aufgabe vor, bei der ich mir selber nicht so sicher bin, weil die brüche mich recht verwirren:

(3x²-4)²=(2x-1)²+4(x+3)
[mm] 9x^{4}-24x²+16=4x²-4x+1+4x+12 [/mm]

[mm] 9x^{4}-28x²+3=0 [/mm] | :9

[mm] x^{4}-\bruch{28}{9}x²+\bruch{1}{3}=0 [/mm]

substitution:   z=x²

[mm] z²-\bruch{28}{9}z+\bruch{1}{3}=0 [/mm]

z1,2    = [mm] \bruch{\bruch{28}{9}}{2} [/mm] +- [mm] \wurzel{(\bruch{\bruch{28}{9}}{2} )²-\bruch{1}{3}} [/mm]

z1  = 3

z2  = [mm] \bruch{79}{81} [/mm]

rücksubtitution:

    x 1,2= +- [mm] \wurzel{3}=1,73 [/mm]

    x [mm] 3,4=+-\wurzel{\bruch{79}{81}}=0,99 [/mm]

richtig?

gruß zitrone


Bezug
                        
Bezug
biquadratische gleichungen: Korrektur
Status: (Antwort) fertig Status 
Datum: 16:13 Di 29.04.2008
Autor: Loddar

Hallo zitrone!




> z1,2    = [mm]\bruch{\bruch{28}{9}}{2}[/mm] +- [mm]\wurzel{(\bruch{\bruch{28}{9}}{2} )²-\bruch{1}{3}}[/mm]

[ok] Bis hierher alles richtig ...

  

> z1  = 3

[ok]

  

> z2  = [mm]\bruch{79}{81}[/mm]

[notok] Hier habe ich [mm] $z_2 [/mm] \ = \ [mm] \bruch{1}{9}$ [/mm] erhalten.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]