matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Stochastikbivariate Normalverteilung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - bivariate Normalverteilung
bivariate Normalverteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

bivariate Normalverteilung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:01 Di 07.11.2006
Autor: markus99

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo
ich muß die Ableitung einer bivariaten kumulativen Normalverteilung berechnen.

die Verteilung ist ja definiert als :

[mm] N_{2} (x,y,\rho)= \integral_{-\infty}^{x}{\integral_{-\infty}^{y}{(2\pi)^{-1}(1-\rho)^{-\bruch{1}{2}}exp(-\bruch{1}{2}\bruch{u^2-2\rho uv + v^2}{1-\rho ^2})du}dv} [/mm]

In meinem Fall muß ich folgende Ableitung berechnen:


[mm] \bruch{dN_{2} (N^{-1}(p_{i}(y)),N^{-1}(p_{j}(y)),\rho)}{dy} [/mm]

wobei
[mm] p_{i}(y)=N(\bruch{N^{-1}-a_{i}y}{\wurzel{1-a_{i}^2}}) [/mm]

N ist hier die Standardnormalverteilung


Die Lösung hierfür soll sein:

[mm] 2p_{i}^{'} (y)N(\bruch{N^{-1}(p_{j}(y))-\rho N^{-1}(p_{i}(y))}{\wurzel{1-\rho^2}}) [/mm]

Ich muß ehrlich gestehen, dass ich hier mit meinen Mathekenntnissen nicht wirklich weiter komme. Darum hoffe ich , dass mir vielleicht jemand von euch weiterhelfen kann. Würde mich über jeden Tip freuen.
Vielen Dank

        
Bezug
bivariate Normalverteilung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:24 Mi 15.11.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]