matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysiscantor menge C
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - cantor menge C
cantor menge C < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

cantor menge C: stetige forts. einer fkt C->IR
Status: (Frage) beantwortet Status 
Datum: 22:35 Do 21.10.2004
Autor: Jan_Z

gegeben ist die Menge [mm] C=\{x\in\IR; x= \summe_{i=1}^{\infty}\bruch{a_{n}}{3^{n}}, a_{n}\in\{0,2\}\} [/mm]
außerdem ist die fkt. [mm] \phi: C\to\IR [/mm] def. durch [mm] \phi(x)= \summe_{i=1}^{\infty}\bruch{a_{n}}{2^{n+1}}. [/mm]
1) zeige dass [mm] \phi [/mm] monoton ist (hab ich)
2) zeige dass [mm] \phi [/mm] eine stetige fortsetzung [mm] \overline{\phi} [/mm] : [mm] [0,1]\to\IR [/mm] besitzt.

Bei 2) kann ich mir schon vorstellen, wie die fortsetzung aussieht: ich überbrücke die lücken mit einer konstanten fortsetzung, denn zwei punkte, zwischen denen kein Wert aus C liegt (also nur die Lücke) haben den gleichen funktionswert. aber wie zeige ich die stetigkeit in den punkten, die in C liegen? Wär nett, wenn mir jemand helfen könnte, es ist dringend

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
cantor menge C: Idee
Status: (Antwort) fertig Status 
Datum: 18:50 Fr 22.10.2004
Autor: Stefan

Hallo Jan!

Es steht ja nirgendswo geschrieben, dass du die stetige Fortsetzung explizit angeben sollst (das wird auch schwierig, denn man müsste sie mit Hilfe von Grenzwerten äquivalenter Cauchyfolgen "konstruieren"). Du sollst du nur zeigen, dass eine solche stetige Fortsetzung existiert.

Dazu verwendest du am Besten den folgenden


Satz über die stetige Fortsetzbarkeit gleichmäßig stetiger Funktionen

Es sei [mm] $\blue{X \subset Y \subset \IR}$, $\blue{X}$ [/mm] sei dicht in [mm] $\blue{Y}$ [/mm] und [mm] $\blue{f : X \to \IR}$ [/mm] sei gleichmäßig stetig. Dann existiert genau eine stetige Fortsetzung [mm] $\blue{\bar{f}}$ [/mm] von [mm] $\blue{f}$ [/mm] auf [mm] $\blue{Y}$.
[/mm]


Bei dir ist [mm] $Y=\IR$. [/mm] Damit musst du also "nur" zeigen:

Für alle [mm] $\varepsilon>0$ [/mm] gibt es ein [mm] $\delta>0$, [/mm] so dass für alle $x,y [mm] \in [/mm] C$ mit $|x-y| < [mm] \delta$ [/mm] gilt:

[mm] $\vert \phi(x) [/mm] - [mm] \phi(y) \vert [/mm] < [mm] \varepsilon$. [/mm]


Dann bist du fertig.


Und das zu zeigen ist hier nicht schwierig. Die Monotonie und die einfache Struktur der Abbildung hilft einem entscheidend weiter. Man könnte sich zu vorgegebenem [mm] $\varepsilon [/mm] >0$ ja einfach mal ein [mm] $n_0 \in \IN$ [/mm] mit

[mm] $\frac{1}{2^{n_0+1}} [/mm] < [mm] \varepsilon$ [/mm]

wählen (und sich dann überlegen, wie man [mm] $\delta [/mm] > 0$ zu wählen hat).

Versuche es bitte mal und melde dich mit einem Lösungsvorschlag (falls es nicht schon zu spät ist, denn die Fälligkeit ist ja bereits abgelaufen).

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]