matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Reihencauchy-folge
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - cauchy-folge
cauchy-folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

cauchy-folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:06 Fr 24.08.2012
Autor: Mathe-Lily

Hallo!
Ich versuche gerade, mir die Cauchy-Folgen etwas klarer zu machen und wollte mal fragen, ob das, was ich mir so denke, auch richtig ist:

Definition:
Eine Folge [mm] (a_{i})_{i\in \IN} [/mm] in [mm] \IK [/mm] heißt Cauchy-Folge, wenn gilt: [mm] \forall \epsilon [/mm] >0 [mm] \exists N\in \IN [/mm] : [mm] \forall [/mm] m,n [mm] \le [/mm] N : [mm] |a_{m}-a_{n}|<\epsilon. [/mm]
(mit [mm] \IK [/mm] = [mm] \IC [/mm] oder [mm] \IR [/mm] oder [mm] \IQ [/mm] oder [mm] \IN [/mm] )

Dh. eine Cauchy-Folge ist eine Folge, bei der der Abstand der Folgeglieder im Verlauf der Folge immer kleiner wird.

Allgemein gilt: konvergiert eine Folge, so ist sie eine Cauchy-Folge.
Andersherum gilt dies nur, wenn der Körper vollständig ist.
Z.B. gilt dies in [mm] \IR [/mm] aber nicht in [mm] \IQ [/mm]

Beispiele:
- [mm] (a_{n})_{n\in \IN} [/mm] = [mm] (n)_{n\in \IN} [/mm] ist keine Cauchy-Folge
- [mm] (a_{n})_{n\in \IN} [/mm] = [mm] (\bruch{1}{n})_{n\in \IN} [/mm] ist eine Cauchy-Folge
- [mm] a_{0}:=1, a_{n+1}= \bruch{a_{n}}{2}+\bruch{1}{a_{n}} [/mm] konvergiert in den reellen Zahlen, erfüllt in den rationalen Zahlen die Cauchy-Eigenschaft, konvergiert dort aber nicht, da der Grenzwert gleich [mm] \wurzel{2} [/mm] ist, welches nicht in den rationalen Zahlen ist.
Hieran sieht man auch die Notwendigkeit der Voraussetzung "Vollständigkeit", damit eine Cauchyfolge in dem Raum konvergiert.


Ist das so richtig?
GIbt es vielleicht noch etwas wichtiges, das ich hier nicht aufgeführt habe?

Grüßle, Lily :-)

        
Bezug
cauchy-folge: Antwort
Status: (Antwort) fertig Status 
Datum: 13:19 Fr 24.08.2012
Autor: leduart

Hallo
> Hallo!
>  Ich versuche gerade, mir die Cauchy-Folgen etwas klarer zu
> machen und wollte mal fragen, ob das, was ich mir so denke,
> auch richtig ist:
>  
> Definition:
>  Eine Folge [mm](a_{i})_{i\in \IN}[/mm] in [mm]\IK[/mm] heißt Cauchy-Folge,
> wenn gilt: [mm]\forall \epsilon[/mm] >0 [mm]\exists N\in \IN[/mm] : [mm]\forall[/mm]
> m,n [mm]\le[/mm] N : [mm]|a_{m}-a_{n}|<\epsilon.[/mm]

hier ist ein Fehler:
richtig m,n [mm]\ge[/mm] N

>  (mit [mm]\IK[/mm] = [mm]\IC[/mm] oder [mm]\IR[/mm] oder [mm]\IQ[/mm] oder [mm]\IN[/mm] )
>  
> Dh. eine Cauchy-Folge ist eine Folge, bei der der Abstand
> der Folgeglieder im Verlauf der Folge immer kleiner wird.

Das ist anschaulich zwar nicht falsch, aber eine konstante Folge, z.B [mm] a_n=1 [/mm]  ist auch eine Cauchyfolge, wenn auch nicht sehr spannend, der Abstand wird auch nicht nur immer jleiner /dann könnte er trotzdem >0.01 bleiben.
so dass deine Beschreibung zu ungenau und damit falsch ist. ist. Die Def selbst ist viel präziser

> Allgemein gilt: konvergiert eine Folge, so ist sie eine
> Cauchy-Folge.

richtig

>  Andersherum gilt dies nur, wenn der Körper vollständig
> ist.
>  Z.B. gilt dies in [mm]\IR[/mm] aber nicht in [mm]\IQ[/mm]
>  
> Beispiele:
>  - [mm](a_{n})_{n\in \IN}[/mm] = [mm](n)_{n\in \IN}[/mm] ist keine
> Cauchy-Folge
>  - [mm](a_{n})_{n\in \IN}[/mm] = [mm](\bruch{1}{n})_{n\in \IN}[/mm] ist eine
> Cauchy-Folge
>  - [mm]a_{0}:=1, a_{n+1}= \bruch{a_{n}}{2}+\bruch{1}{a_{n}}[/mm]
> konvergiert in den reellen Zahlen, erfüllt in den
> rationalen Zahlen die Cauchy-Eigenschaft, konvergiert dort
> aber nicht, da der Grenzwert gleich [mm]\wurzel{2}[/mm] ist, welches
> nicht in den rationalen Zahlen ist.
>  Hieran sieht man auch die Notwendigkeit der Voraussetzung
> "Vollständigkeit", damit eine Cauchyfolge in dem Raum
> konvergiert.
>  
>
> Ist das so richtig?

der 2 te Teil ist richtig

>  GIbt es vielleicht noch etwas wichtiges, das ich hier
> nicht aufgeführt habe?

Nichts was ich grad sehe.
Gruss leduart  



Bezug
                
Bezug
cauchy-folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:29 Fr 24.08.2012
Autor: Mathe-Lily

Danke erstmal :-)


> > Definition:
>  >  Eine Folge [mm](a_{i})_{i\in \IN}[/mm] in [mm]\IK[/mm] heißt
> Cauchy-Folge,
> > wenn gilt: [mm]\forall \epsilon[/mm] >0 [mm]\exists N\in \IN[/mm] : [mm]\forall[/mm]
> > m,n [mm]\le[/mm] N : [mm]|a_{m}-a_{n}|<\epsilon.[/mm]
>  hier ist ein Fehler:
>  richtig m,n [mm]\ge[/mm] N
>  >  (mit [mm]\IK[/mm] = [mm]\IC[/mm] oder [mm]\IR[/mm] oder [mm]\IQ[/mm] oder [mm]\IN[/mm] )

oh, ja, da hab ich wohl beim Tippen \ le und \ ge verwechselt...

>  >  
> > Dh. eine Cauchy-Folge ist eine Folge, bei der der Abstand
> > der Folgeglieder im Verlauf der Folge immer kleiner wird.
>  Das ist anschaulich zwar nicht falsch, aber eine konstante
> Folge, z.B [mm]a_n=1[/mm]  ist auch eine Cauchyfolge, wenn auch
> nicht sehr spannend, der Abstand wird auch nicht nur immer
> jleiner /dann könnte er trotzdem >0.01 bleiben.
>  so dass deine Beschreibung zu ungenau und damit falsch
> ist. ist. Die Def selbst ist viel präziser

Wenn ich sagen würde "...wird beliebig klein" wäre das besser?





Bezug
                        
Bezug
cauchy-folge: Antwort
Status: (Antwort) fertig Status 
Datum: 13:57 Fr 24.08.2012
Autor: Fulla

Hallo Mathe-Lily,

> Wenn ich sagen würde "...wird beliebig klein" wäre das
> besser?

ich würde sagen "Der Abstand der Folgenglieder wird schließlich beliebig klein" oder "... ist eine Nullfolge".

So, wie du es geschrieben hast könnte man meinen, dass der Abstand irgendwo beliebig klein wird, aber aber einem bestimmten Index wieder größer wird.


Lieben Gruß,
Fulla


Bezug
                                
Bezug
cauchy-folge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:32 Fr 24.08.2012
Autor: Mathe-Lily

ah, ok, danke :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]