matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebracharakteristisches Polynom
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - charakteristisches Polynom
charakteristisches Polynom < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

charakteristisches Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:08 Mi 16.04.2008
Autor: SusanneK

Aufgabe
Sei V ein endl.dimensionaler Vektorraum über einem Körper K. Seien U und W Unterräume von V und sei [mm] V=U \oplus W[/mm]. Seien [mm] f_1: U \to U, f_2: W \to W [/mm] linear. Sei [mm] f \in End(V) [/mm] definiert durch [mm] f(v)=f_1(u) + f_2(w) [/mm] für alle [mm] v=u+w [/mm] in V mit [mm] u \in U, w \in W [/mm].
Beweisen Sie, dass [mm] x_f=x_f_1x_f_2 [/mm] ist. (x=charakteristisches Polynom)

Ich habe diese Frage in keinem anderen Forum gestellt.

Hallo, mein Ansatz - leider sehr wenig - ist Folgender:
Ich denke mal, dass die Eigenwerte von [mm] f_1 [/mm] und [mm] f_2 [/mm] verschieden sind, da U und W komplementär sind.
Dadurch sind dann auch die Eigenvektoren von [mm] f_1 [/mm] und [mm] f_2 [/mm] verschieden.
Stimmt das ?
Leider weiss ich nicht so richtig weiter.

Danke, Susanne.

        
Bezug
charakteristisches Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 18:18 Mi 16.04.2008
Autor: angela.h.b.


> Sei V ein endl.dimensionaler Vektorraum über einem Körper
> K. Seien U und W Unterräume von V und sei [mm]V=U \oplus W[/mm].
> Seien [mm]f_1: U \to U, f_2: W \to W[/mm] linear. Sei [mm]f \in End(V)[/mm]
> definiert durch [mm]f(v)=f_1(u) + f_2(w)[/mm] für alle [mm]v=u+w[/mm] in V
> mit [mm]u \in U, w \in W [/mm].
>  Beweisen Sie, dass [mm]x_f=x_f_1x_f_2[/mm]
> ist. (x=charakteristisches Polynom)

>  Ich denke mal, dass die Eigenwerte von [mm]f_1[/mm] und [mm]f_2[/mm]
> verschieden sind, da U und W komplementär sind.

Hallo,

hierfür sehe ich keinen Grund.

Gegenbeispiel: [mm] \IR^2=<\vektor{1 \\ 0}>+<\vektor{0 \\ 1}> [/mm]

[mm] f_1 [/mm] : Identitat auf [mm] <\vektor{1 \\ 0}>, f_2: [/mm] Identität auf [mm] \vektor{0 \\ 1}. [/mm]

Beide habe den Eigenwert 1, (allerdings in der Tat verschiedene Eigenvektoren).


Mal ein Tip: Die Basen von U und W ergeben zusammen eine von V.

Stell mal fest, welche Gestalt die darstellende Matrix von f bzgl. dieser Basis hat, und erinnere Dich dann an die Determinanten von Blockmatrizen.

Gruß v. Angela



Bezug
                
Bezug
charakteristisches Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:02 Mi 16.04.2008
Autor: SusanneK

Hallo Angela,
danke für Deine Hilfe !

Ich denke, die darstellende Matrix von f  ist eine Diagonalmatrix. Allerdings weiss ich nicht so richtig, warum.
Weil die Basisvektoren linear unabhängig sind ? Das muss doch nicht zwingend eine Diagonalmatrix ergeben ?
Bei einer Blockmatrix werden die char.Polynome multipliziert, genau was man beweisen muss, aber durch eine Addition von [mm] f_1 [/mm] und [mm] f_2 [/mm] bekomme ich doch keine Blockmatrix ?

LG, Susanne.

Bezug
                        
Bezug
charakteristisches Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 07:41 Do 17.04.2008
Autor: angela.h.b.


> Ich denke, die darstellende Matrix von f  ist eine
> Diagonalmatrix.

Hallo,

nein, eine Diagonalmatrix ist das i.a. nicht, das, was Du sagst, hat aber trotzdem einen wahren Kern: es ist eine diagonale Blockmatrix (oder heißt das: Blockdiagonalmatrix?)

Wir machen jetzt noch ein Beispiel. Genauer gesagt sollst Du es machen.

Es sei V=U [mm] \oplus [/mm] W,
[mm] (u_1,u_2) [/mm] eine Basis von U und
[mm] (w_1, w_2,w_3) [/mm] eine Basis von W.

Jetzt betrachte zwei lineare Abbildungen,

[mm] f_U: [/mm] U [mm] \to [/mm] U  mit
[mm] f(u_1) :=u_1+2u_2 [/mm]
[mm] f(u_2) :=3u_1+4u_2, [/mm]

[mm] f_W: [/mm] W [mm] \to [/mm] W  mit
[mm] f(w_1) :=5w_1+4w_2+3w_3 [/mm]
[mm] f(w_2) :=2w_2 [/mm]
[mm] f(w_3) :=5w_1+5w_2+5w_3 [/mm]

Mach nun folgendes:

Schreibe die Darstellungsmatizen von [mm] f_U [/mm] bzgl [mm] (u_1,u_2) [/mm] auf und die von [mm] f_W [/mm] bzgl. [mm] (w_1, w_2,w_3). [/mm]


Nun betrachten wir den Endomorphismus  f des "großen" Raumes V, mit

f(v):= [mm] f_U(u) [/mm] + [mm] f_W(w) [/mm]   für alle v=u+w [mm] \in [/mm] V mit  [mm] u\in [/mm] U, [mm] w\in [/mm] W.

Bedenke, daß [mm] (u_1,u_2,w_1, w_2,w_3) [/mm] eine Basis von V ist, und stell die Darstellungsmatrix bzgl dieser Abbildung auf. Der Weg zum charakteristischen Polynom ist dann nicht mehr weit.

Wenn Dir dieses Beispiel geglückt ist, wirst Du verstehen, warum die Aussage, die Du beweisen sollst, stimmt. (Ich mache das übrigens oft so, daß ich mir zu solchen Aufgaben erstmal ein Beipiel mache, um alles zu begreifen.)

Gruß v. Angela






Bezug
                                
Bezug
charakteristisches Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:08 Do 17.04.2008
Autor: SusanneK

Hallo Angela,
erstmal VIELEN VIELEN DANK für diese tolle Erklärung.

> Jetzt betrachte zwei lineare Abbildungen,
>
> [mm]f_U:[/mm] U [mm]\to[/mm] U  mit
>  [mm]f(u_1) :=u_1+2u_2[/mm]
>  [mm]f(u_2) :=3u_1+4u_2,[/mm]
>  
> [mm]f_W:[/mm] W [mm]\to[/mm] W  mit
>  [mm]f(w_1) :=5w_1+4w_2+3w_3[/mm]
>  [mm]f(w_2) :=2w_2[/mm]
>  [mm]f(w_3) :=5w_1+5w_2+5w_3[/mm]
>  
> Mach nun folgendes:
>  
> Schreibe die Darstellungsmatizen von [mm]f_U[/mm] bzgl [mm](u_1,u_2)[/mm] auf
> und die von [mm]f_W[/mm] bzgl. [mm](w_1, w_2,w_3).[/mm]

Darstellungsmatrix von [mm] f_U=\pmat{1&3\\2&4} [/mm]
Darstellungsmatrix von [mm] f_W=\pmat{5&0&5\\4&2&5\\3&0&5} [/mm]

> Nun betrachten wir den Endomorphismus  f des "großen"
> Raumes V, mit
>  
> f(v):= [mm]f_U(u)[/mm] + [mm]f_W(w)[/mm]   für alle v=u+w [mm]\in[/mm] V mit  [mm]u\in[/mm] U,
> [mm]w\in[/mm] W.
>  
> Bedenke, daß [mm](u_1,u_2,w_1, w_2,w_3)[/mm] eine Basis von V ist,
> und stell die Darstellungsmatrix bzgl dieser Abbildung auf.
> Der Weg zum charakteristischen Polynom ist dann nicht mehr
> weit.

Achso, ist das jetzt die direkte Summe, also
[mm] \pmat{1&3&0&0&0\\2&4&0&0&0\\0&0&5&0&5\\0&0&4&2&5\\0&0&3&0&5}[/mm]  ?

> Wenn Dir dieses Beispiel geglückt ist, wirst Du verstehen,
> warum die Aussage, die Du beweisen sollst, stimmt. (Ich
> mache das übrigens oft so, daß ich mir zu solchen Aufgaben
> erstmal ein Beipiel mache, um alles zu begreifen.)

Ja, super, wenn meine Bemerkungen stimmen, hab ich es jetzt verstanden - VIELEN DANK !

LG, Susanne.

Bezug
                                        
Bezug
charakteristisches Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 17:00 Do 17.04.2008
Autor: angela.h.b.


>  Achso, ist das jetzt die direkte Summe, also
>  
> [mm]\pmat{1&3&0&0&0\\2&4&0&0&0\\0&0&5&0&5\\0&0&4&2&5\\0&0&3&0&5}[/mm]
>  ?

Hallo,

ja, genau.

Jetzt hast Du es verstanden, was mich freut.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]