matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungden Wert von m bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integralrechnung" - den Wert von m bestimmen
den Wert von m bestimmen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

den Wert von m bestimmen: Idee zum Ansatz
Status: (Frage) beantwortet Status 
Datum: 20:53 Di 12.12.2006
Autor: Karlchen

Aufgabe
Für welchen Wert von m ist die rote Fläche gleich groß, wie die blaue? Drücken Sie zunächst die Flächeninhalte in Abhängikeit von z aus und bestimme sie daraus m.

Hallo zusammen!

tut mir leid, weiß leider nciht wie das mit dem zeichnen geht, des wegen werde ich versuchen die Zeichnung zu beschreiben.

[mm] f(x)=-x^{2}+4x [/mm]       g(x)=mx

z=Schnittpunkt von f(x) und g(x)
blaue Fläche: Intervall von 0 bis z
rote Fläche: Intervall von z bis 4

ich hoffe das reicht erst einmal.

So mein Problem ist jetzt, dass ich nicht weiß wie ich da ran gehen muss...also muss ich die Flächen gleichsetzen oder was?

Gruß euer Karlchen

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
den Wert von m bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:25 Di 12.12.2006
Autor: M.Rex

Hallo.

Am besten bildest du erstmal die Differenzfunktion f(x)-g(x)
Also -x²+(4-m)x

Und jetzt bildest du das Integral
[mm] \integral_{0}^{z}f(x)dx [/mm]

Und dann berechnest du aus [mm] 0,5*\integral_{0}^{z}f(x)dx=\integral_{0}^{z}f(x)-g(x)dx [/mm]

das m.

Wenn ich das jetzt richtig interpretiert habe. Wenn nicht, musst du die Aufgabe mal einscannen und hier mit Bild posten.

Marius


Bezug
                
Bezug
den Wert von m bestimmen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 22:49 Di 12.12.2006
Autor: Karlchen

also danke erst einmal !^^(kann leider nichts einscannen, hab keinen scanner)

aber scheint logisch zu sein

ich möchte hier nur mal kurz mein ergebnis niederschreiben, weil bin mri nicht sicher, ob das richtig ist.

[mm] \bruch{1}{2}* \integral_{0}^{z}{-x^{2}+4x dx} [/mm] = [mm] \integral_{0}^{z}{(-x^{2}+4x) - mx dx} [/mm]

[mm] \Rightarrow \bruch{1}{2}* [-\bruch{1}{3}x^{3}+2x^{2}] [/mm] = [mm] [-\bruch{1}{3}x^{3}+2x^{2}-\bruch{m}{2}x^{2}] [/mm]

[mm] \Rightarrow -\bruch{1}{6}z^{3}+z^{2}=-\bruch{1}{3}+(2-\bruch{m}{2})*z^{2} [/mm]

[mm] \Rightarrow \bruch{1}{6}z^{3} [/mm] = 2 - [mm] \bruch{m}{2} [/mm]

(hab [mm] -\bruch{1}{3}z^{3} [/mm] und [mm] :z^{2} [/mm] gerechnet, war das richtig?)

dann -2

[mm] \Rightarrow \bruch{1}{6}z^{3}-2=\bruch{m}{2} [/mm]

dann *2

[mm] \Rightarrow \bruch{1}{3}z^{3}-4=m [/mm]

so das ist mein ergebnis, nur wie gesagt bin mir nicht sicher, ob das so richtig ist, über eine korrektur oder ein hinweis auf einen Fehler wäre ich sehr dankbar^^

Gruß Karlchen

Bezug
                        
Bezug
den Wert von m bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:00 Di 12.12.2006
Autor: M.Rex

Hallo

> also danke erst einmal !^^(kann leider nichts einscannen,
> hab keinen scanner)
>  
> aber scheint logisch zu sein
>  
> ich möchte hier nur mal kurz mein ergebnis niederschreiben,
> weil bin mri nicht sicher, ob das richtig ist.
>  
> [mm]\bruch{1}{2}* \integral_{0}^{z}{-x^{2}+4x dx}[/mm] =
> [mm]\integral_{0}^{z}{(-x^{2}+4x) - mx dx}[/mm]
>  
> [mm]\Rightarrow \bruch{1}{2}* [-\bruch{1}{3}x^{3}+2x^{2}][/mm] =
> [mm][-\bruch{1}{3}x^{3}+2x^{2}-\bruch{m}{2}x^{2}][/mm]
>  
> [mm]\Rightarrow -\bruch{1}{6}z^{3}+z^{2}=-\bruch{1}{3}+(2-\bruch{m}{2})*z^{2}[/mm]

Hier hast du ein z³ vergessen, aber korrekt weitergerechnet, ausser dass du  durch z² teilst.

Also:
[mm] -\bruch{1}{6}z^{3}+z^{2}=-\bruch{1}{3}+(2-\bruch{m}{2})*z^{2} [/mm]
[mm] \red{\gdw}\bruch{1}{6}z^{3}-[1-(2-\bruch{m}{2})]z²=0 [/mm]
[mm] \gdw\bruch{1}{6}z^{3}-[-1+\bruch{m}{2})]z²=0 [/mm]
[mm] \gdw\bruch{1}{6}z^{3}+(1-\bruch{m}{2})z²=0 [/mm]
[mm] \gdw z²(\bruch{1}{6}z+(1-\bruch{m}{2})=0 [/mm]
[mm] \Rightarrow [/mm] z²=0 oder [mm] \bruch{1}{6}z+1-\bruch{m}{2}=0 [/mm]


Gruss

Marius

Bezug
                                
Bezug
den Wert von m bestimmen: nochma ne rückfrage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 23:21 Di 12.12.2006
Autor: Karlchen

sorry, dass ich so schwer von begriff bin,aber mir ist da noch etwas unklar

[mm] -\bruch{1}{6}z^{3}+z^{2}=-\bruch{1}{3}+(2-\bruch{m}{2})*z^{2} [/mm]
[mm] \red{\gdw}\bruch{1}{6}z^{3}-[1-(2-\bruch{m}{2})]z²=0 [/mm]

1. wie kommst du auf diese umformung?

2. was ist jetzt m?

kann man m mit der 2. gleichung [mm] \bruch{1}{6}z+1-\bruch{m}{2}=0 [/mm] berechnen?

hab das gemacht und [mm] m=\bruch{1}{3}z+2 [/mm] erhalten

achso und echt danke für deine mühe^^

Bezug
                                        
Bezug
den Wert von m bestimmen: Antwort zum artikel
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:26 Mi 13.12.2006
Autor: Karlchen

Wir haben die Aufgabe heute im Unterricht besprochen. MEin Lehrer einte, dass mit abhängikeit von z kann man auch weg lassen.

Der Ansatz würde dann folgendermaßen aussehen:

[mm] \integral_{0}^{4-m}{(-x^{2}+4x-mx) dx} [/mm] = [mm] \integral_{4-m}^{4}{mx+x^{2}-4x dx} [/mm]

wenn man das dann ausrechnet kommt [mm] m=\bruch{4}{3} [/mm] heraus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]