matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDeterminantendet(expA)=exp(tr(A))
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Determinanten" - det(expA)=exp(tr(A))
det(expA)=exp(tr(A)) < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

det(expA)=exp(tr(A)): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:39 So 20.07.2008
Autor: svenpile

Aufgabe
Sei A [mm] \in M(n,\IC). [/mm] Beweisen sie :

det(expA)=exp(tr(A))

So mein Ansatz ist folgender:

Für jede Matrix A [mm] \in M8n,\IC) [/mm] existiert eine Matrix S sodass,

[mm] A´=S^{-1}AS [/mm] mit A´ obere Dreiecksmatrix

[mm] \Rightarrow [/mm] det(exp A´)=det (exp [mm] S^{-1}AS) [/mm]
[mm] \Rightarrow [/mm] det (exp A´)= det(exp A)

ab da stockts bei mir, denn ich habe keine Ahnung wie ich jetzt auf die Spur kommen soll.
Es wäre nett wenn mir jemand helfgen Könnte.

Vielen Dank


        
Bezug
det(expA)=exp(tr(A)): Antwort
Status: (Antwort) fertig Status 
Datum: 16:02 So 20.07.2008
Autor: Merle23

Versuch's lieber mit der Jordannormalform.

Bezug
                
Bezug
det(expA)=exp(tr(A)): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:42 So 20.07.2008
Autor: svenpile

Wenn ich über die JNF von A gehe habe ich ja die gleichen Voraussetzungen wie oben bloß das anstatt A´ [mm] J_A [/mm] steht. Also, dass [mm] det(expJ_A)=det(expA) [/mm]

von der Jordannormalform weiß ich, dass det [mm] J_A [/mm] = tr [mm] J_A. [/mm]

so ich muss ja zeigen, dass [mm] det(expJ_A)=exp(tr(A) [/mm]
[mm] det(E+A+0,5A^2+.....)=exp(tr(A)) [/mm]
so und hier komme ich nicht mehr weiter, da wenn [mm] J_A [/mm] nicht nilpotent ist das ja eine ziemlich lange Summe und die kann man ja nicht wirklich bestimmen.
Weiß jemand wie es da weitergeht?

Viele Grüße Sven

Bezug
                        
Bezug
det(expA)=exp(tr(A)): Antwort
Status: (Antwort) fertig Status 
Datum: 17:59 So 20.07.2008
Autor: Merle23

Wenn man die JNF kennt, dann kann man exp(A) relativ leicht berechnen: []Wiki-Link.

Bezug
                                
Bezug
det(expA)=exp(tr(A)): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:04 Mo 21.07.2008
Autor: svenpile

Also ich komme bei der Aufgabe trotz deines Tips nicht weiter.
Also nochmal die spur einer JNF sind ja die Eigenwerte von A .
Seien die Eigenwerte von A [mm] a_1,...a_n. [/mm]
Dann ist ja [mm] exp(spur(A))=exp(a_1+.....+a_n)=e^a_1+.....+e^a_nAuf [/mm] der anderen Seite habe ich ja [mm] det(expJ_A)=det(E+A+0,5 A^2+...) [/mm] und das müsste gleich dem oberen sein oder?
Aber ich kann jetzt trotz Merles Tipp nicht die Determinante ausrechnen(bin irgendwie zu blöd dafür). Kann mir jemand helfen?

Viele Grüße

Bezug
                                        
Bezug
det(expA)=exp(tr(A)): Antwort
Status: (Antwort) fertig Status 
Datum: 21:39 Mo 21.07.2008
Autor: Merle23

[mm] det(exp(A))=det(exp(X^{-1}*J_A*X))=det(X^{-1}*exp(J_A)*X)=det(exp(J_A)) [/mm]

Hier wurde erst A in JNF gebracht (mit X als die Transformationsmatrix), dann wurde eine Eigenschaft der Matrixexponentialfunktion benutzt und dann wurde ausgenutzt, dass die Determinanten ähnlicher Matrizen gleich sind.

Und für [mm] exp(J_A) [/mm] ist auf dem Wiki-Artikel beschrieben wie man es ausrechnet (ohne die unendliche Reihe zu benutzen).

Und dann brauchst du noch [mm] tr(A)=\summe_{i=1}^{n}\lambda_i, [/mm] wobei [mm] \lambda_i [/mm] die Eigenwerte der diagonalisierbaren Matrix A sind.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]