matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und Geometriedicht
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Topologie und Geometrie" - dicht
dicht < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

dicht: aufgabe
Status: (Frage) beantwortet Status 
Datum: 11:41 Fr 24.06.2005
Autor: sara_20

Ich habe hier keine Idee was ich machen soll d.h. ich habe es versucht mit einem Bewiss aber irgendwie habe ich das Gefuehl dass er nicht komplet ist. Also,
Sei E dicht in X und U [mm] \subseteqX [/mm] . U ist offen. Dann gilt:
U  [mm] \subseteq \overline{E\cap U}. [/mm]

Ich habe es mir der karakterisation  von [mm] x\in\overline{A} [/mm] und nabe dabei benutzt dass E dicht ist. Weiss aber nicht weiter. Kann mir jemand helfen?

Danke.

        
Bezug
dicht: Antwort
Status: (Antwort) fertig Status 
Datum: 12:14 Fr 24.06.2005
Autor: Stefan

Hallo Sara!

Es sei [mm] $O_1$ [/mm] eine beliebig gewählte offene Umgebung von $x$. Zu zeigen ist: $(E [mm] \cap [/mm] U) [mm] \cap O_1 \ne \emptyset$. [/mm]

Da $U$ offen ist, gibt es eine offene Umgebun [mm] $O_2$ [/mm] von $x$ mit [mm] $O_2 \subset [/mm] U$. Dann ist auch [mm] $O:=O_1 \cap O_2$ [/mm] eine offene Umgebung von $x$. Da $E$ dicht in $X$ ist, gibt es ein $y [mm] \in [/mm] E [mm] \cap (O_1 \cap O_2)$, [/mm] und nach Wahl von [mm] $O_2$ [/mm] gilt:

$y [mm] \in [/mm] E [mm] \cap (O_1 \cap [/mm] U) = (E [mm] \cap [/mm] U) [mm] \cap O_1$. [/mm]

Viele Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]