matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysisdiff´bar, monotonie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - diff´bar, monotonie
diff´bar, monotonie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

diff´bar, monotonie: Richtig oder falsch?
Status: (Frage) beantwortet Status 
Datum: 20:48 Do 31.08.2006
Autor: hooover

Aufgabe
Geg.: Sei die Fkt. [mm] f:\IR\to\IR [/mm] definiert durch

[mm] f(n)=\begin{cases} ae^{4x}, & \mbox{für } x \ge0 \\ -ln(-x+a)+b,, & \mbox{für } x<0 \end{cases} [/mm]

a) Bestimmen Sie a>0 und [mm] b\varepsilon\IR [/mm] so, dass f{x} in allen [mm] x\varepsilon\IR [/mm] diff´bar ist.

b) Untersuchen sie f für dei gefundene Parameter a und b auf Monotonie


Hallo Leute,

ich bin mit der ganzen Materie nicht so vertraut und behandele das alles zum erstenmal, darum habe ich noch keine Blick dafür ob meine Lösung richtig sein könnte oder nicht.

hier meine Lösung.

zu a)

f{x}=-ln(-x+a)+b soll diff´bar für a>0 und [mm] b\varepsilon\IR [/mm] sein

also

[mm] \limes_{x(von unten)\rightarrow0}-ln(-x+a)+b=\limes_{x(von oben)\rightarrow0}ae^{4x} [/mm]

[mm] -ln(-x+a)+b=ae^{4x} [/mm]


[mm] -ln(0+a)+b=ae^0 [/mm]

-lna+b=a

b=lna+a

[mm] \limes_{x(von unten)\rightarrow0}-ln(-x+a)+lna+a=a [/mm] !!!

zu b)

f{x}=-ln(-x+a)+lna+a

[mm] f{(x^')}=\bruch{1}{-x+a}-1 [/mm]

[mm] 1\not=0 [/mm]  also kein Extrema

[mm] f{x}=ae^{4x} [/mm]

[mm] f{x^'}=4ae^{4x} [/mm]

[mm] 4ae^{4x}=0 [/mm]

[mm] e^{4x}\not=0 [/mm]

jetzt wähle ich zwei Werte für x<0

-3<-2 und setze sie ein

-ln(-3+a)+lna+a<-ln(-2+a)+lna+a

-ln(-3+a)<-ln(-2+a)  |*(-1)

3+a>2+a

3>2  also monoton wachsend

jetzt

prüfe ich 1>2 für x>0

[mm] ae^4>ae^8 [/mm]

[mm] e^4>e^8 [/mm]

4>8  also monoton wachsend

somit ist die ganze FUnktion monoton wachsend!


Ist das so richtig oder habe wieder mal irgendwas falsch gemacht

vielen Dank gruß hooover





        
Bezug
diff´bar, monotonie: Antwort
Status: (Antwort) fertig Status 
Datum: 00:09 Fr 01.09.2006
Autor: leduart

Hallo hoover
> Geg.: Sei die Fkt. [mm]f:\IR\to\IR[/mm] definiert durch
>  
> [mm]f(n)=\begin{cases} ae^{4x}, & \mbox{für } x \ge0 \\ -ln(-x+a)+b,, & \mbox{für } x<0 \end{cases}[/mm]
>  
> a) Bestimmen Sie a>0 und [mm]b\varepsilon\IR[/mm] so, dass f{x} in
> allen [mm]x\varepsilon\IR[/mm] diff´bar ist.
>  
> b) Untersuchen sie f für dei gefundene Parameter a und b
> auf Monotonie
>  

> hier meine Lösung.
>  
> zu a)
>  
> f{x}=-ln(-x+a)+b soll diff´bar für a>0 und [mm]b\varepsilon\IR[/mm]
> sein
>  
> also
>  
> [mm]\limes_{x(von unten)\rightarrow0}-ln(-x+a)+b=\limes_{x(von oben)\rightarrow0}ae^{4x}[/mm]
>  
> [mm]-ln(-x+a)+b=ae^{4x}[/mm]
>  
>
> [mm]-ln(0+a)+b=ae^0[/mm]
>  
> -lna+b=a
>  
> b=lna+a
>  
> [mm]\limes_{x(von unten)\rightarrow0}-ln(-x+a)+lna+a=a[/mm] !!!

Hiermit hast du gezeigt, dass die Fkt in 0 stetig ist, das ist ja eine notwendige Beziehung für Differenzierbarkeit!
Jetzt fehlt noch das differenzierbar, also der Vergleich der 2 Ableitungen. daraus bestimmst du dann a.

> zu b)
>  
> f{x}=-ln(-x+a)+lna+a
>
> [mm]f{(x^')}=\bruch{1}{-x+a}-1[/mm]

Ableitung falsch! woher kommt die -1? Konstanten abgeleitet ergeben 0!

> [mm]1\not=0[/mm]  also kein Extrema

Wenn deine Ableitung richtig wär hättest du doch  :
[mm]\bruch{1}{-x+a}=1[/mm] und das hat ne Nullstelle!

> [mm]f{x}=ae^{4x}[/mm]
>  
> [mm]f{x^'}=4ae^{4x}[/mm]
>  
> [mm]4ae^{4x}=0[/mm]
>  
> [mm]e^{4x}\not=0[/mm]
>  
> jetzt wähle ich zwei Werte für x<0
>  
> -3<-2 und setze sie ein
>  
> -ln(-3+a)+lna+a<-ln(-2+a)+lna+a
>  
> -ln(-3+a)<-ln(-2+a)  |*(-1)

Wo bleibt der ln?

>  
> 3+a>2+a

Wo bleibt das Minus bei der 3 und der 2?

> 3>2  also monoton wachsend

Beweisweg falsch! Berechne f(-3) und f(-2) dann vergleich sie!

> jetzt

Ab hier musst du Unsinn mit den Ungleichheitszeichen gemacht haben! Lies deine Postings am Ende doch noch mal durch !! 1>2 sollte da nicht stehen.

> prüfe ich 1>2 für x>0
>  
> [mm]ae^4>ae^8[/mm]
>  
> [mm]e^4>e^8[/mm]
>  
> 4>8  also monoton wachsend
>  
> somit ist die ganze FUnktion monoton wachsend!
>  
>
> Ist das so richtig oder habe wieder mal irgendwas falsch
> gemacht

Ja
Gruss leduart.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]