matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungdifferentialrechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Differenzialrechnung" - differentialrechnung
differentialrechnung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

differentialrechnung: mittlere Steigung
Status: (Frage) beantwortet Status 
Datum: 12:56 So 01.04.2012
Autor: BelaB3110

Aufgabe
Es soll die mittlere steigung der fununktion f(x) = 2- [mm] \wurzel{x-1} [/mm]
im Punkt (18/ -2,123) berechnet werden

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

ich ich habe versucht diese aufgabe in die allg formel einzusetzen kam aber nicht wirklich weiter , da ich keinen ansatz gefunden habe um etwas wegzukürzen um so den grenzwert zu erechen
ich hoffe mir kann geholfen werden

        
Bezug
differentialrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:11 So 01.04.2012
Autor: Diophant

Hallo BelaB3110 und

[willkommenmr]

Wenn ich das richtig verstehe, dann möchtest du die Ableitung der Funktion f mit

[mm]f(x)=2-\wurzel{x-1}[/mm]

an der Stelle [mm] x_0=18 [/mm] als Differentialquotient berechnen.

Wenn das so stimmt, dann hätten wir

[mm]f'(18)=\limes_{h\rightarrow{0}}\bruch{f(18+h)-f(18)}{h}=-\limes_{h\rightarrow{0}}\bruch{\wurzel{17+h}-\wurzel{17}}{h} [/mm]

mit der h-Methode*.

Erweitere hier den Bruch im Limes mit dem Term

[mm]\wurzel{17+h}+\wurzel{17}[/mm]

Es entsteht im Zähler so ein 3. Binom, welches man dementsprechend vereinfachen kann. Danach lässt sich der Grenzwert auswerten.

*Du hast nicht dazugeschrieben, welche Methode zur Bildung des Grenzwerts herangezogen werden soll, daher habe ich es mal per h-Methode angesetzt.


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]