matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Stochastikdiskrete/stetige Verteilungen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Stochastik" - diskrete/stetige Verteilungen
diskrete/stetige Verteilungen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

diskrete/stetige Verteilungen: Unterschied
Status: (Frage) beantwortet Status 
Datum: 18:45 So 25.10.2009
Autor: oeli1985

Aufgabe
Wo liegt der Unterschied zwischen den diskreten und den stetigen Verteilungen?

Hallo zusammen,
ich bereite mich gerade auf meine Staatsexamen vor und versuche dazu typische Prüfungsfragen zu beantworten. Dabei haben mir einige wenige doch noch Probleme bereitet.

Die oben aufgeführte gehört zu diesen.

Ich weiß natürlich, dass diskrete Verteilungen direkt über das Wahrscheinlichkeitsmaß stetige Verteilungen indirekt über die Dichte definiert werden.

Folglich lässt sich im Fall der stetigen Verteilungen die Wahrscheinlichkeit dafür, dass eine Zufallsvariable innerhalb eines bestimmten Intervalls liegt "integrieren".

Dementsprechend bestünde meines Erachtens formal auch ein Unterschied darin, dass man im Fall der diskreten Verteilungen die Wahrscheinlichkeiten von Ergebnissen und Ereignissen als Mengen und im Fall der stetigen Verteilungen als Punkte und Intervalle berechnet.

Allerdings scheinen mir diese Unterschiede nicht die wirklich bezeichnenden zu sein!?

Wäre nett, wenn mir jemand weiterhelfen könnte (sowohl "formal als auch praktisch")). Danke schon mal im Voraus und viele Grüße


Patrick

        
Bezug
diskrete/stetige Verteilungen: Verteilungen
Status: (Antwort) fertig Status 
Datum: 11:00 So 01.11.2009
Autor: Infinit

Hallo patrick,
eine Sache hast Du schon erkannt, nämlich, dass die Charakteristik der Verteilungen unterschiedlich ist. Zu einer diskreten Verteilung gehören auch immer diskrete Ereignisse und da liegt ein typischer Unterschied zwischen stetigen und diskreten Verteilungen.
Die Wahrscheinlichkeitsdichtefunktion einer diskreten Verteilung wird durch Diracfunktionen beschrieben, wohingegen man bei stetiger Verteilung eine stetige Funktion besitzt.
Das bedeutet für die Verteilungsfunktion, dass diese bei einer diskreten Verteilung Sprünge aufweist, was bei einer stetigen Verteilung nicht der Fall ist.
Hieraus folgt auch, dass bei einer diskreten Verteilung, die Wahrscheinlichkeit, dass ein bestimmtes Ereignis auftritt, von Null verschieden ist, sobald durch die Zufallsvariable an dieser Stelle ein Wert definiert ist, oder anders augedrückt:
$$ P(x = [mm] x_i) [/mm] = [mm] P_x (x_i)\, [/mm] . $$
So etwas gibt es bei einer stetigen Verteilung nicht, da Du Ober- und Intergrenze des Integrals gleich sind und demzufolge dann gilt:
$$ P(x = [mm] x_i) [/mm] = 0 [mm] \, [/mm] . $$
Zur Bestimmung der Wahrscheinlichkeit eines Ereignisses bei einer diskreten Verteilung geht die Integration in eine Summation über.
Viele Grüße,
Infinit

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]