matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Sonstigesdiverse Aufgaben
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Sonstiges" - diverse Aufgaben
diverse Aufgaben < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

diverse Aufgaben: Aufgabe 4
Status: (Frage) beantwortet Status 
Datum: 19:57 Di 19.02.2008
Autor: diecky

Aufgabe
Berechnen Sie die folgenden Integrale
(i) [mm] \integral_{2}^{3}{\bruch{dx}{x²-2x+2}} [/mm]
(ii) [mm] \integral_{0}^{2}{\bruch{x²}{\wurzel{1+x^{3}}}}dx [/mm]
(iii) [mm] \integral_{0}^{2}{(x²-x)logx dx} [/mm]


Meine Lösungen:

Aufg.4
(i) Hierfür hab ich eine Formel für uneigentliche Integrale gefunden, die evtl passen könnte:
... = [mm] [\bruch{2}{\wurzel{4q-p²}}arctan\bruch{2x+p}{\wurzel{4q-p²}}] [/mm] = einsetzen der Grenzen = arctan2 - arctan1 = arctan2 - [mm] \bruch{\pi}{4} [/mm]

(ii) Ich substituiere z=1+x³ und erhalte:
[mm] \integral_{1}^{9}{\bruch{1}{3\wurzel{z}}dz} [/mm] = einsetzen der Grenzen = [mm] \bruch{1}{3}ln3 [/mm]

(iii) Hier erhalte ich nach partieller Integration u'(x) = x²-x und v(x)=logx:
[mm] \bruch{2}{3}log2 [/mm] + [mm] \bruch{1}{9} [/mm]


        
Bezug
diverse Aufgaben: Aufgabe (ii)
Status: (Antwort) fertig Status 
Datum: 20:02 Di 19.02.2008
Autor: Loddar

Hallo diecky!


> (ii) Ich substituiere z=1+x³ und erhalte: [mm]\integral_{1}^{9}{\bruch{1}{3\wurzel{z}}dz}[/mm]

[ok] Richtig!


> = einsetzen der Grenzen = [mm]\bruch{1}{3}ln3[/mm]

[notok] Wie kommst Du hier auf den [mm] $\ln(...)$ [/mm] ?
Wie lautet denn Deine Stammfunktion?

Du kannst doch schreiben:  [mm] $\bruch{1}{3*\wurzel{z}} [/mm] \ = \ [mm] \bruch{1}{3}*z^{-\bruch{1}{2}}$ [/mm] .


Gruß
Loddar


Bezug
        
Bezug
diverse Aufgaben: Aufgabe (iii)
Status: (Antwort) fertig Status 
Datum: 20:06 Di 19.02.2008
Autor: Loddar

Hallo diecky!


Dein Ansatz ist sehr gut und richtig! Aber bist Du sicher, dass die untere Grenze hier [mm] $x_u [/mm] \ = \ [mm] \red{0}$ [/mm] heißen soll? Denn für diesen Wert ist [mm] $\log(x)$ [/mm] gar nicht definiert.


Gruß
Loddar


Bezug
                
Bezug
diverse Aufgaben: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:09 Di 19.02.2008
Autor: diecky

Öhm..ja..komischerweise geht das Integral von 0 bis 2,aber du hast recht: für 0 ist log(x) nicht definiert...und nu? Ist die Lösung dann nicht definiert?:-)

Bezug
                        
Bezug
diverse Aufgaben: uneigentliches Integral
Status: (Antwort) fertig Status 
Datum: 10:56 Mi 20.02.2008
Autor: Loddar

Hallo diecky!


Sollte die untere Grenze tatsächlich [mm] $x_u [/mm] \ = \ 0$ lauten, musst Du ein sogenanntes "uneigentliches Integral" mittels Grenzwertbetrachtung berechnen:

[mm] $$\integral_{0}^{2}{\left(x^2-x\right)*\log(x) \ dx} [/mm] \ = \ [mm] \limes_{u\rightarrow 0}\integral_{u}^{2}{\left(x^2-x\right)*\log(x) \ dx} [/mm] \ = \ ...$$

Gruß
Loddar


Bezug
        
Bezug
diverse Aufgaben: Aufgabe (i)
Status: (Antwort) fertig Status 
Datum: 20:08 Di 19.02.2008
Autor: Loddar

Hallo diecky!


Deine Formel habe ich nicht überprüft. Du kannst ja umformen:

[mm] $$\bruch{1}{x^2-2x+2} [/mm] \ = \ [mm] \bruch{1}{x^2-2x+1+1} [/mm] \ = \ [mm] \bruch{1}{(x-1)^2+1}$$ [/mm]
Das ergibt dann als Stammfunktion: [mm] $\arctan(x-1)$ [/mm] .

Damit stimmt auch Dein Ergebnis.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]