matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche Differentialgleichungendy/dx = -sin^2(x+y)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gewöhnliche Differentialgleichungen" - dy/dx = -sin^2(x+y)
dy/dx = -sin^2(x+y) < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

dy/dx = -sin^2(x+y): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:08 Do 15.10.2009
Autor: GreatBritain

Aufgabe
$$ [mm] \frac{dy}{dx} [/mm] = [mm] -sin^2(x+y)$$ [/mm]

hi
obige Aufgabe haben wir als Beispiel in der Vorlesung aufgeschrieben. Ich verstehe bei der Ausführung des Beispiels bereits den ersten Schritt nicht - vielleicht kann's mir jemand erklären (es sei noch angemerkt, dass das meine ersten Gehversuche im Bereich Differentialgleichungen sind ;-) ):

Wähle $z = x+y [mm] \Rightarrow [/mm] z' = 1+y'$
So, hier gehts schon los. Wie kommt man denn bitte darauf? Woher weiß man, dass $x$ abgeleitet 1 ergibt?

ok, dann geht es weiter:
$$z' = 1 - [mm] sin^2(z) [/mm] = [mm] cos^2(z)$$, [/mm] mit Kenntnis des ersten Schrittes klar, hier wird dann einfach y' eingesetzt.

[mm] $$\Rightarrow \frac{dz}{dx} [/mm] = [mm] cos^2(z)$$ [/mm] wird wohl auch erst verständlich, wenn man Schritt 1 kapiert hat? Verstehe nicht ganz, warum $z' = [mm] \frac{dz}{dx}$ [/mm] ist, einfach weil doch gar kein $x$ mehr vorkommt...

Der Rest der Aufgabe ist dann eigentlich klar, umformen, auf beiden Seiten integrieren etc., aber ich verstehe diese "Vorarbeit" nicht - dass man die Substitution $x+y=z$ durchführt ist ja noch einleuchtend, aber bei Folgepfeil steige ich dann leider schon aus...

Bin für jede Hilfe dankbar!!
Gruß GB


        
Bezug
dy/dx = -sin^2(x+y): Antwort
Status: (Antwort) fertig Status 
Datum: 12:17 Do 15.10.2009
Autor: fred97


> [mm]\frac{dy}{dx} = -sin^2(x+y)[/mm]
>  hi
>  obige Aufgabe haben wir als Beispiel in der Vorlesung
> aufgeschrieben. Ich verstehe bei der Ausführung des
> Beispiels bereits den ersten Schritt nicht - vielleicht
> kann's mir jemand erklären (es sei noch angemerkt, dass
> das meine ersten Gehversuche im Bereich
> Differentialgleichungen sind ;-) ):
>  
> Wähle [mm]z = x+y \Rightarrow z' = 1+y'[/mm]
>  So, hier gehts schon
> los. Wie kommt man denn bitte darauf? Woher weiß man, dass
> [mm]x[/mm] abgeleitet 1 ergibt?

z = x+y ist nur eine Abkürzung für $z(x) = x+y(x)$

Also ist $z'(x) = 1+y'(x)$

Beispiel: ist y(x) [mm] =e^x, [/mm] so ist z(x) = [mm] x+e^x [/mm]


FRED


>  
> ok, dann geht es weiter:
>  [mm]z' = 1 - sin^2(z) = cos^2(z)[/mm], mit Kenntnis des ersten
> Schrittes klar, hier wird dann einfach y' eingesetzt.
>  
> [mm]\Rightarrow \frac{dz}{dx} = cos^2(z)[/mm] wird wohl auch erst
> verständlich, wenn man Schritt 1 kapiert hat? Verstehe
> nicht ganz, warum $z' = [mm]\frac{dz}{dx}$[/mm] ist, einfach weil
> doch gar kein $x$ mehr vorkommt...
>  
> Der Rest der Aufgabe ist dann eigentlich klar, umformen,
> auf beiden Seiten integrieren etc., aber ich verstehe diese
> "Vorarbeit" nicht - dass man die Substitution [mm]x+y=z[/mm]
> durchführt ist ja noch einleuchtend, aber bei Folgepfeil
> steige ich dann leider schon aus...
>  
> Bin für jede Hilfe dankbar!!
>  Gruß GB
>  


Bezug
                
Bezug
dy/dx = -sin^2(x+y): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:38 Do 15.10.2009
Autor: GreatBritain

hm, das zu Wissen ist natürlich gut :-)

Vielen Dank!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]