matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-Funktionene- Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Exp- und Log-Funktionen" - e- Funktion
e- Funktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

e- Funktion: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:47 Mi 09.12.2009
Autor: jusdme

Aufgabe
e * x + e^-x = 0

Lösen Sie nach x auf.

        
Bezug
e- Funktion: so gehts
Status: (Antwort) fertig Status 
Datum: 18:48 Mi 09.12.2009
Autor: Adamantin

eigener Ansatz? eigene Ideen? gar keine? falsch gelesen sorry, moment

also sofern du meinst $ [mm] e*x+e^{-x}$, [/mm] kannst du so vorgehen:

Also da du hier im Grunde eine GLeichung der Form [mm] e^x=x [/mm] hast, kannst du das nicht mit numerischen Mitteln sinnvoll lösen, sondern musst zu Annäherungslösungen wie dem Netwton'schen Iterationsverfahren greifen, sprich, du musst die NST abschätzen

neuer Ansatz, achtung mit den Vorzeichen haha
Ich bekomme es noch auf die Form:

[mm] $e*x=-\bruch{1}{e^x} [/mm] $
[mm] $x=-\bruch{1}{e^{x+1}}$ [/mm]
[mm] $-x=+\bruch{1}{e^{x+1}}$ [/mm]
$ln(-x)=ln(1)-(x+1)$
$ln(-x)=-x-1$

Nun sehen wir das Gegenteil, da der ln(x) nur für x>0 gilt, muss hier x<0, also negativ sein, damit eine Lösung existiert. Hier kann man mit Probieren auch schnell auf -1 kommen, ansonsten wächst x viel zu schnell im Vergleich zu ln(x)



ok ich muss nen Rechenfehler gemacht haben, die Lösung lautet x=-1, aber ich schaue noch nach, wo ich falsch gedacht habe!

Offenbar bringt dir Umformen hier wirklich nichts, man kann es nur "raten", das geht hier ganz gut, dann sieht man -1 als Lösung recht schnell, oder man macht es mit dem erwähnten Näherungsverfahren, die Umformung in den ln(x) müsste korrekt sein und liefert für -1 eine def.-Lücke, daher bringt das nix ^^

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]