matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-Funktionene^-x ableiten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Exp- und Log-Funktionen" - e^-x ableiten
e^-x ableiten < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

e^-x ableiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:57 So 02.03.2008
Autor: little_doc

Aufgabe
Leiten sie folgende Funktion ab:
[mm] f(x)=e^{-\lambda|x|} [/mm]

Hallo zusammen

Meine Gedanken: aus den Betragsstrichen und dem negativen [mm] -\lambda [/mm] schliesse ich, dass der Exponnnent in jedem Fall negativ sein muss.

[mm] e^{x} [/mm] abgeleitetet ergiebt ja wieder [mm] e^{x} [/mm]

ergibt [mm] e^{-x} [/mm] abgeleitet auch [mm] e^{-x}? [/mm]
finde das eben gerade in keiner Tabelle :-(
Falls dem so wäre, würde ich schliessen, dass [mm] e^{-\lambda|x|} [/mm] abgeleitet wieder [mm] e^{-\lambda|x|} [/mm] geben würde...

Korrekt?

Liebe Grüsse
Tobi


        
Bezug
e^-x ableiten: Antwort
Status: (Antwort) fertig Status 
Datum: 11:01 So 02.03.2008
Autor: Tyskie84

Hallo!

[mm] e^{-x} [/mm] abgeleitet ergibt [mm] -e^{-x}. e^{2x} [/mm] ergibt abgeleitet [mm] 2e^{2x}. e^{-4x} [/mm] ergibt abgeleitet [mm] -4e^{-4x}. [/mm] So nun versuche dass auf deine Aufgabe zu übertragen, bedenke was |x| bedeutet, nämlich einmal (-x) und einmal (+x). :-)

[cap] Gruß

Bezug
                
Bezug
e^-x ableiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:07 So 02.03.2008
Autor: little_doc

also dann:

[mm] f(x)=e^{-\lambda|x|} [/mm]
abgeleitet gibt dann....

[mm] -\lambda*e^{-\lambda*x} [/mm] wenn x positiv
[mm] \lambda*e^{\lambda*x} [/mm] wenn x negativ

richtig?

Bezug
                        
Bezug
e^-x ableiten: Antwort
Status: (Antwort) fertig Status 
Datum: 11:22 So 02.03.2008
Autor: zetamy

Hallo,

deine Ableitung ist richtig.

Gruß zetamy

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]